Cambridge International AS \& A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 1 2}$
Paper 1 Pure Mathematics	March $\mathbf{2 0 2 0}$
MARK SCHEME	

MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\mathrm{f}^{\prime}(x)=\left[-(3 x+2)^{-2}\right] \times[3]+[2 x]$	B2, $\mathbf{1 , 0}$	
	<0 hence decreasing	$\mathbf{B 1}$	Dependent on at least B1 for $\mathrm{f}^{\prime}(x)$ and must include <0 or '(always) neg $'$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	[Stretch] [factor 2, x direction (or y-axis invariant)]	$\begin{gathered} \text { *B1 } \\ \text { DB1 } \end{gathered}$	
	[Translation or Shift] [1 unit in y direction] or [Translation/Shift] $\left[\binom{0}{1}\right]$	B1B1	Accept transformations in either order. Allow (0, 1) for the vector
		4	

Question	Answer	Marks	Guidance
3	$(\pi) \int(y-1) \mathrm{d} y$	$* \mathbf{M 1}$	SOI Attempt to integrate x^{2} or $(y-1)$
	$(\pi)\left[\frac{y^{2}}{2}-y\right]$	A1	
	$(\pi)\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$	DM1	Apply limits $1 \rightarrow 5$ to an integrated expression
	8π or AWRT 25.1	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
4	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x-2$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{6}$	B1	OE, SOI
	their $(2 x-2)=$ their $\frac{4}{6}$	M1	LHS and RHS must be their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ expression and value
	$x=\frac{4}{3}$ oe	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
5	$2 \tan \theta-6 \sin \theta+2=\tan \theta+3 \sin \theta+2 \rightarrow \tan \theta-9 \sin \theta(=0)$	$\mathbf{M 1}$	Multiply by denominator and simplify
	$\sin \theta-9 \sin \theta \cos \theta(=0)$	$\mathbf{M 1}$	Multiply by $\cos \theta$
	$\sin \theta(1-9 \cos \theta)(=0) \rightarrow \sin \theta=0, \quad \cos \theta=\frac{1}{9}$	$\mathbf{M 1}$	Factorise and attempt to solve at least one of the factors $=0$
	$\theta=0$ or 83.6° (only answers in the given range)	$\mathbf{A 1 A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
6(a)	$5 \mathrm{C} 2[2(x)]^{3}\left[\frac{a}{\left(x^{2}\right)}\right]^{2}$	B1	SOI Can include correct x 's
	$10 \times 8 \times a^{2}\left(\frac{x^{3}}{x^{4}}\right)=720\left(\frac{1}{x}\right)$	B1	SOI Can include correct x 's
	$a= \pm 3$	B1	
		3	
6(b)	5C4 $[2(x)]\left[\frac{\text { their } a}{\left(x^{2}\right)}\right]^{4}$	B1	SOI Their a can be just one of their values (e.g. just 3). Can gain mark from within an expansion but must use their value of a
	810 identified	B1	Allow with x^{-7}
		2	

Question	Answer	Marks	Guidance
7	$O C=6 \cos 0.8=4.18(0)$	M1A1	SOI
	Area sector $O C D=\frac{1}{2}(\text { their } 4.18)^{2} \times 0.8$	$* \mathbf{M 1}$	OE
	$\Delta O C A=\frac{1}{2} \times 6 \times$ their $4.18 \times \sin 0.8$	M1	OE
	Required area $=$ their $\triangle O C A-$ their $\operatorname{sector} O C D$	DM1	SOI. If not seen their areas of sector and triangle must be seen
	2.01	A1	CWO. Allow or better e.g. 2.0064
		$\mathbf{6}$	

Question	Answer	Marks	Guidance
8(a)	2\%	B1	
		1	
8(b)	Bonus $=600+23 \times 100=2900$	B1	
	Salary $=30000 \times 1.03^{23}$	M1	Allow 30000×1.03^{24} (60984)
	$=59207.60$	A1	Allow answers of 3significant figure accuracy or better
	$\frac{\text { their } 2900}{\text { their } 59200}$	M1	SOI
	4.9(0)\%	A1	
		5	

Question	Answer	Marks	Guidance
9(a)	$\left[2(x+3)^{2}\right][-7]$	B1B1	Stating $a=3, b=-7$ gets B1B1
		2	
9(b)	$y=2(x+3)^{2}-7 \rightarrow 2(x+3)^{2}=y+7 \rightarrow(x+3)^{2}=\frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with x / y interchange
	$x+3=(\pm) \sqrt{\frac{y+7}{2}} \rightarrow x=(\pm) \sqrt{\frac{y+7}{2}}-3 \rightarrow \mathrm{f}^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on their a and b. Allow $y=\ldots$
	Domain: $x \geqslant-5$ or $\geqslant-5$ or $[-5, \infty)$	B1	Do not accept $y=\ldots, f(x)=\ldots, f^{-1}(x)=\ldots$
		3	
9(c)	$\mathrm{fg}(x)=8 x^{2}-7$	B1FT	SOI. FT on their -7 from part (a)
	$8 x^{2}-7=193 \rightarrow x^{2}=25 \rightarrow x=-5$ only	B1	
	Alternative method for question 9(c)		
	$\mathrm{g}(x)=\mathrm{f}^{-1}(193) \rightarrow 2 x-3=-\sqrt{100}-3$	M1	FT on their $\mathrm{f}^{-1}(x)$
	$x=-5$ only	A1	
		2	
9(d)	$\left(\text { Largest } k \text { is) }-\frac{1}{2}\right.$	B1	Accept $-\frac{1}{2}$ or $k \leqslant-\frac{1}{2}$
		1	

Question	Answer	Marks	Guidance
10(a)	$2(a+3)^{\frac{1}{2}}-a=0$	M1	SOI. Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=a$. Can be implied by an answer in terms of a
	$4(a+3)=a^{2} \rightarrow a^{2}-4 a-12=0$	M1	Take a to RHS and square. Form 3-term quadratic
	$(a-6)(a+2) \rightarrow a=6$	A1	Must show factors, or formula or completing square. Ignore $a=-2$ SC If a is never used maximum of M1A1 for $x=6$, with visible solution
		3	
10(b)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(x+3)^{\frac{1}{2}}-1$	B1	
	Sub their $a \rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{3}-1=-\frac{2}{3}($ or $<0) \rightarrow$ MAX	M1A1	A mark only if completely correct If the second differential is not $-\frac{2}{3}$ correct conclusion must be drawn to award the M1
		3	
10(c)	$(y=) \frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{2} x^{2}(+c)$	B1B1	
	Sub $x=$ their a and $y=14 \rightarrow 14=\frac{4}{3}(9)^{\frac{3}{2}}-18+c$	M1	Substitute into an integrated expression. c must be present. Expect $c=-4$
	$y=\frac{4}{3}(x+3)^{\frac{3}{2}}-\frac{1}{2} x^{2}-4$	A1	Allow $f(x)=\ldots$.
		4	

Question	Answer	Marks	Guidance
11(a)	$(\tan x-2)(3 \tan x+1)(=0)$. or formula or completing square	M1	Allow reversal of signs in the factors. Must see a method
	$\tan x=2 \text { or }-\frac{1}{3}$	A1	
	$x=63.4^{\circ}($ only value in range $)$ or 161.6° (only value in range)	$\begin{aligned} & \text { B1FT } \\ & \text { B1FT } \end{aligned}$	
		4	
11(b)	Apply $b^{2}-4 a c<0$	M1	SOI. Expect $25-4(3)(k)<0, \tan x$ must not be in coefficients
	$k>\frac{25}{12}$	A1	Allow $b^{2}-4 a c=0$ leading to correct $k>\frac{25}{12}$ for M1A1
		2	
11(c)	$k=0$	M1	SOI
	$\tan x=0$ or $\frac{5}{3}$	A1	
	$x=0^{\circ}$ or 180° or 59.0°	A1	All three required
		3	

Question	Answer	Marks	Guidance
12(a)	Centre $=(2,-1)$	B1	
	$r^{2}=[2-(-3)]^{2}+[-1-(-5)]^{2}$ or $[2-7]^{2}+[-1-3]^{2} \mathrm{OE}$	M1	OR $\frac{1}{2}\left[(-3-7)^{2}+(-5-3)^{2}\right]$ OE
	$(x-2)^{2}+(y+1)^{2}=41$	A1	Must not involve surd form $\mathbf{S C B} 3(x+3)(x-7)+(y+5)(y-3)=0$
		3	
12(b)	Centre $=$ their $(2,-1)+\binom{8}{4}=(10,3)$	B1FT	SOI FT on their $(2,-1)$
	$(x-10)^{2}+(y-3)^{2}=$ their 41	B1FT	FT on their 41 even if in surd form $\mathbf{S C B} 2(x-5)(x-15)+(y+1)(y-7)=0$
		2	

Question	Answer	Marks	Guidance
12(c)	Gradient m of line joining centres $=\frac{4}{8} \mathrm{OE}$	B1	
	Attempt to find mid-point of line.	M1	Expect (6,1$)$
	Equation of $R S$ is $y-1=-2(x-6)$	M1	Through their $(6,1)$ with gradient $\frac{-1}{m}$
	$y=-2 x+13$	A1	AG
	Alternative method for question 12(c)		
	$(x-2)^{2}+(y+1)^{2}-41=(x-10)^{2}+(y-3)^{2}-41 \mathrm{OE}$	M1	
	$x^{2}-4 x+4+y^{2}+2 y+1=x^{2}-20 x+100+y^{2}-6 y+9 \mathrm{OE}$	A1	Condone 1 error or errors caused by 1 error in the first line
	$16 x+8 y=104$	A1	
	$y=-2 x+13$	A1	AG
		4	
12(d)	$(x-10)^{2}+(-2 x+13-3)^{2}=41$	M1	Or eliminate y between C_{1} and C_{2}
	$x^{2}-20 x+100+4 x^{2}-40 x+100=41 \rightarrow 5 x^{2}-60 x+159=0$	A1	AG
		2	

Cambridge International AS \& A Level

MATHEMATICS	$9709 / 12$
Paper 1 Pure Mathematics 1	March 2021
MARK SCHEME	

MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$1+5 x+10 x^{2}$	B1	
		1	
1(b)	$1-12 x+60 x^{2}$	B2, 1, 0	B2 all correct, B1 for two correct components.
		2	
1(c)	$\left(1+5 x+10 x^{2}\right)\left(1-12 x+60 x^{2}\right)$ leading to $60-60+10$	M1	3 products required
	10	A1	Allow $10 x^{2}$
		2	

Question	Answer	Marks	
2	$u=2 x-3$ leading to $u^{4}-3 u^{2}-4[=0]$	M1	Or $u=(2 x-3)^{2}$ leading to $u^{2}-3 u-4[=0]$
	$\left(u^{2}-4\right)\left(u^{2}+1\right)[=0]$	M1	Or $(u-4)(u+1)[=0]$
	$2 x-3=[\pm] 2$	A1	
	$x=\frac{1}{2}, \frac{5}{2}$ only	A1	
		$\mathbf{4}$	

Question	Answer	Marks	
3	$\tan \theta+2 \sin \theta=3 \tan \theta-6 \sin \theta$ leading to $2 \tan \theta-8 \sin \theta[=0]$	M1	OE
	$2 \sin \theta-8 \sin \theta \cos \theta(=0)$ leading to $[2] \sin \theta(1-4 \cos \theta)[=0]$	M1	
	$\cos \theta=\frac{1}{4}$	A1	Ignore $\sin \theta=0$
	$\theta=75.5^{\circ}$ only	A1	
		4	

Question	Answer	Marks	Guidance
4	$x^{2}+k x+6=3 x+k$ leading to $x^{2}+x(k-3)+(6-k)[=0]$	M1	Eliminate y and form 3-term quadratic.
	$(k-3)^{2}-4(6-k)[>0]$	M1	OE. Apply $b^{2}-4 a c$.
	$k^{2}-2 k-15[>0]$	A1	Form 3-term quadratic.
	$(k+3)(k-5)[>0]$	A1	Or $k=-3,5$ from use of formula or completing square.
	$k<-3, \quad k>5$	A1 FT	Or any correct alternative notation, do not allow \leqslant, \geqslant. FT for their outside regions.
		5	

Question	Answer	Marks	Guidance
5(a)	(Stretch) (factor 3 in y direction or parallel to the y -axis)	B1 B1	
	(Translation) $\binom{4}{0}$	B1 B1	Allow Translation 4 (units) in x direction. N.B. Transformations can be given in either order.
		4	
5(b)	$[y=] 3 \mathrm{f}(x-4)$	B1 B1	B1 for $3, \mathrm{~B} 1$ for $(x-4)$ with no extra terms.
		2	

Question	Answer	Marks	
6 6(a)	At $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$	B1	
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\left(\frac{\mathrm{d} x}{\mathrm{~d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} t}\right)=\frac{1}{6} \times 3=\frac{1}{2}$	M1 A1	Ghaidance Chule used correctly. Allow alternative and minimal notation.
		$\mathbf{3}$	

Question	Answer	Marks	
$6(\mathrm{~b})$	$[y=]\left(\frac{6(3 x-2)^{-2}}{-2}\right) \div(3)[+c]$	B1 B1	
	$-3=-1+c$		
	$y=-(3 x-2)^{-2}-2$	M1	Substitute $x=1, y=-3 . c$ must be present.
		A1	OE. Allow $\mathrm{f}(x)=$
		4	

Question	Answer	Marks	Guidance
7(a)	$[\mathrm{f}(x)=](x+1)^{2}+2$	B1 B1	Accept $a=1, b=2$.
	Range [of f is $(y)] \geqslant 2$	B1FT	OE. Do not allow $x \geqslant 2$, FT on their b.
		3	
7(b)	$y=(x+1)^{2}+2$ leading to $x=[\pm] \sqrt{y-2}-1$	M1	Or by using the formula. Allow one sign error.
	$\mathrm{f}^{-1}(x)=-\sqrt{x-2}-1$	A1	
		2	

Question	Answer	Marks	Guidance
$74(\mathrm{c})$	$2\left(x^{2}+2 x+3\right)+1=13$	B1	Or using a correct completed square form of $\mathrm{f}(x)$.
	$2 x^{2}+4 x-6[=0]$ leading to $(2)(x-1)(x+3)[=0]$	B1	Or $x=1, x=-3$ using formula or completing square. Must reach 2 solutions.
	$x=-3$ only	B1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
8(a)	Centre of circle is (4,5)	B1 B1	
	$r^{2}=(7-4)^{2}+(1-5)^{2}$	M1	OE. Either using their centre and A or C or using A and C and dividing by 2.
	$r=5$	A1 FT	FT on their $(4,5)$ if used.
	Equation is $(x-4)^{2}+(y-5)^{2}=25$	A1	OE. Allow 5^{2} for 25.
		5	
8(b)	$\text { Gradient of radius }=\frac{9-5}{7-4}=\frac{4}{3}$	B1 FT	FT for use of their centre.
	Equation of tangent is $y-9=-\frac{3}{4}(x-7)$	B1	or $y=\frac{-3 x}{4}+\frac{57}{4}$
		2	

Question	Answer	Marks	Guidance
9(a)(i)	$\frac{\cos \theta}{1-r}=\frac{1}{\cos \theta}$	B1	
	$1-r=\cos ^{2} \theta$ leading to $r=1-\cos ^{2} \theta$	M1	Eliminate fractions
	$r=\sin ^{2} \theta \quad$ leading to 2 nd term $=\cos \theta \sin ^{2} \theta$	A1	AG
		3	
9(a)(ii)	$S_{12}=\frac{\cos \left(\frac{\pi}{3}\right)\left[1-\left(\sin ^{2}\left(\frac{\pi}{3}\right)\right)^{12}\right]}{1-\sin ^{2}\left(\frac{\pi}{3}\right)}=\frac{0.5\left[1-(0.75)^{12}\right]}{1-0.75}$	M1	Evidence of correct substitution, use of S_{n} formula and attempt to evaluate
	1.937	A1	
		2	
9(b)	$[d=] \cos \theta \sin ^{2} \theta-\cos \theta$	M1	Use of $d=u_{2}-u_{1}$
	$-\frac{1}{8}$	A1	
	$[85$ th term $=] \frac{1}{2}+84 \times-\frac{1}{8}$	M1	Use of $a+84 d$ with a calculated value of d
	-10	A1	
		4	

Question	Answer	Marks	Guidance
10(a)	$\triangle A D E=\frac{1}{2}(k a)^{2} \sin \frac{\pi}{6}$	M1	Attempt to find the area of $\triangle A D E$.
	$\frac{1}{4} k^{2} a^{2}$	A1	OE.
	Sector $A B C=\frac{1}{2} a^{2} \frac{\pi}{6}$	B1	
	$2 \times \frac{1}{4} k^{2} a^{2}=\frac{1}{2} a^{2} \frac{\pi}{6}$	M1	OE. For $2 \times \triangle A D E=$ sector $A B C$ with at least one correct area.
	$k=\left(\sqrt{\frac{\pi}{6}}\right)=0.7236$	A1	
		5	
10(b)	$2 \times \frac{1}{2}(k a)^{2} \sin \theta=\frac{1}{2} a^{2} \theta$	M1	Condone omission of ' 2 ' or ' $1 / 2$ ' on LHS for M1 only.
	$k^{2}=\frac{\theta}{2 \sin \theta}$	A1	
	$k^{2}>\frac{1}{2} \text { leading to } \frac{1}{\sqrt{2}}<k<1$	A1	OE. Accept $k>\frac{1}{\sqrt{2}}$ or $k>0.707$ (AWRT) or $0.707($ AWRT $)<k<1$ or $k>\sqrt{\frac{1}{2}}$ OE
		3	

Question	Answer	Marks	Guidance
11(a)	$9\left(x^{-\frac{1}{2}}-4 x^{-\frac{3}{2}}\right)=0$ leading to $9 x^{-\frac{3}{2}}(x-4)=0$	M1	OE. Set y to zero and attempt to solve.
	$x=4$ only	A1	From use of a correct method.
		2	
11(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=9\left(-\frac{1}{2} x^{-\frac{3}{2}}+6 x^{-\frac{5}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: $9,-\frac{1}{2} x^{-\frac{3}{2}}$ and $6 x^{-\frac{5}{2}}$ B1; 2 of the 3 terms correct
	At $x=4$ gradient $=9\left(-\frac{1}{16}+\frac{6}{32}\right)=\frac{9}{8}$	M1	Using their $x=4$ in their differentiated expression and attempt to find equation of the tangent.
	Equation is $y=\frac{9}{8}(x-4)$	A1	or $y=\frac{9 x}{8}-\frac{9}{2} \mathrm{OE}$
		4	
11(c)	$9 x^{-\frac{5}{2}}\left(-\frac{1}{2} x+6\right)=0$	M1	Set their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and an attempt to solve.
	$x=12$	A1	Condone (\pm) 12 from use of a correct method.
		2	

Question	Answer	Marks	Guidance
11(d)	$\int 9\left(x^{-\frac{1}{2}}-4 x^{-\frac{3}{2}}\right) \mathrm{d} x=9\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}}-\frac{4 x^{-\frac{1}{2}}}{-\frac{1}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: $9, \frac{x^{\frac{1}{2}}}{\frac{1}{2}}, \frac{-4 x^{-\frac{1}{2}}}{-\frac{1}{2}}$ B1; 2 of the 3 terms correct
	$9\left[\left(6+\frac{8}{3}\right)-(4+4)\right]$	M1	Apply limits their $4 \rightarrow 9$ to an integrated expression with no consideration of other areas.
	6	A1	Use of π scores A0
		4	

Cambridge International AS \& A Level

MATHEMATICS

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- Marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1	$117=\frac{9}{2}(2 a+8 d)$	B1
	Either $91=S_{4}$ with ' a ' as $a+4 d$ or $117+91=S_{13}$ (M1 for overall approach. M1 for S_{n})	M1M1
	Simultaneous Equations $\rightarrow a=7, d=1.5$	A1
		4

Question	Answer	Marks
2	$\left(k x+\frac{1}{x}\right)^{5}+\left(1-\frac{2}{x}\right)^{8}$ Coefficient in $\left(k x+\frac{1}{x}\right)^{5}=10 \times k^{2}$ (B1 for 10. B1 for k^{2})	B1B1
	Coefficient in $\left(1-\frac{2}{x}\right)^{8}=8 \times-2$	B2,1,0
	$10 k^{2}-16=74 \rightarrow k=3$	B1
		5

Question	Answer	Marks
3(a)	$\$ 36000 \times(1.05)^{n}$ (B1 for $r=1.05$. M1 method for r th term)	B1M1
	\$53200 after 8 years.	A1
		3
3(b)	$S_{10}=36000 \frac{\left(1.05^{10}-1\right)}{(1.05-1)}$	M1
	\$453 000	A1
		2

Question	Answer	Marks
4(a)	$-1 \leqslant \mathrm{f}(x) \leqslant 2$	B1 B1
		2
4(b)	$k=1$	B1
	Translation by 1 unit upwards parallel to the y -axis	B1
		2
4(c)	$y=-\frac{3}{2} \cos 2 x-\frac{1}{2}$	B1
		1

Question	Answer	Marks
5(a)	$x(m x+c)=16 \rightarrow m x^{2}+c x-16=0$	B1
	Use of $b^{2}-4 \mathrm{ac}=c^{2}+64 m$	M1
	Sets to $0 \rightarrow m=\frac{-c^{2}}{64}$	A1
		3
5(b)	$x(-4 x+c)=16$ Use of $b^{2}-4 \mathrm{ac} \rightarrow c^{2}-256$	M1
	$c>16$ and $c<-16$	A1 A1
		3

Question	Answer	Marks
6(a)	$3(3 x+b)+b=9 x+4 b \rightarrow 10=18+4 b$	M1
	$b=-2$	A1
	Either $\mathrm{f}(14)=2$ or $\mathrm{f}^{-1}(x)=2(x+a)$ etc.	M1
	$a=5$	A1
		4
6(b)	$\operatorname{gf}(x)=3\left(\frac{1}{2} x-5\right)-2$	M1
	$\operatorname{gf}(x)=\frac{3}{2} x-17$	A1
		2

Question	Answer	Marks
7(a)	$\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}$	M1
	Use of $\sin ^{2} \theta+\cos ^{2} \theta=1 \rightarrow \frac{2+2 \sin \theta}{\cos \theta(1+\sin \theta)} \rightarrow \frac{2}{\cos \theta}$.	M1A1
		3
7(b)	$\frac{2}{\cos \theta}=\frac{3}{\sin \theta} \rightarrow \tan \theta=1.5$	M1
	$\theta=0.983 \text { or } 4.12$ (FT on second value for 1st value $+\pi$)	$\begin{array}{r} \text { A1 } \\ \text { A1FT } \end{array}$
		3
Question	Answer	Marks
8	Angle $A O B=15 \div 6=2.5$ radians	B1
	Angle $B O C=\pi-2.5$ (FT on angle AOB)	B1FT
	$B C=6(\pi-2.5) \quad(B C=3.850)$	M1
	$\sin (\pi-2.5)=B X \div 6 \quad(B X=3.59)$	M1
	Either $O X=6 \cos (\pi-2.5)$ or Pythagoras $(O X=4.807)$	M1
	$X C=6-O X \quad(X C=1.193) \rightarrow P=8.63$	A1
		6

Question	Answer	Marks
9(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3(3-2 x)^{2} \times-2+24=-6(3-2 x)^{2}+24$ (B1 without $\times-2$. $\mathbf{B 1}$ for $\times-2$)	B1B1
	$\begin{aligned} & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-12(3-2 x) \times-2=24(3-2 x) \\ & \left(\text { B1FT from } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { without }-2\right) \end{aligned}$	$\begin{array}{r} \text { B1FT } \\ \text { B1 } \end{array}$
		4
9(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { when } 6(3-2 x)^{2}=24 \rightarrow 3-2 x= \pm 2$	M1
	$x=1 / 2, y=20 \text { or } x=21 / 2, y=52$ (A1 for both x values or a correct pair)	A1A1
		3
9(c)	If $x=1 / 2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}=48$ Minimum	B1FT
	If $x=2^{1 / 2}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-48$ Maximum	B1FT
		2

Question	Answer	Marks
10(a)	Centre is $(3,1)$	B1
	Radius $=5$ (Pythagoras)	B1
	Equation of C is $(x-3)^{2}+(y-1)^{2}=25$ (FT on their centre)	$\begin{array}{r} \text { M1 } \\ \text { A1FT } \end{array}$
		4
10(b)	Gradient from $(3,1)$ to $(7,4)=3 / 4$ (this is the normal)	B1
	Gradient of tangent $=-\frac{4}{3}$	M1
	Equation is $y-4=-\frac{4}{3}(x-7)$ or $3 y+4 x=40$	M1A1
		4
10(c)	B is centre of line joining centres $\rightarrow(11,7)$	B1
	Radius $=5$ New equation is $(x-11)^{2}+(y-7)^{2}=25$ (FT on coordinates of B)	$\begin{array}{r} \text { M1 } \\ \text { A1FT } \end{array}$
		3

Question	Answer	Marks
11(a)	Simultaneous equations $\frac{8}{x+2}=4-1 / 2 x$	M1
	$x=0$ or $x=6 \rightarrow A(0,4)$ and $B(6,1)$	B1A1
	At $C \frac{-8}{(x+2)^{2}}=-\frac{1}{2}$	B1
	(B1 for the differentiation. M1 for equating and solving)	M1A1
		6
11(b)	Volume under line $=\pi \int\left(-\frac{1}{2} x+4\right)^{2} \mathrm{~d} x=\pi\left[\frac{x^{3}}{12}-2 x^{2}+16 x\right]=(42 \pi)$ (M1 for volume formula. A2,1 for integration)	$\begin{array}{r} \text { M1 } \\ \text { A2,1 } \end{array}$
	Volume under curve $=\pi \int\left(\frac{8}{x+2}\right)^{2} \mathrm{~d} x=\pi\left[\frac{-64}{x+2}\right]=(24 \pi)$	A1
	Subtracts and uses 0 to $6 \rightarrow 18 \pi$	M1A1
		6

Cambridge International AS \& A Level

MATHEMATICS

9709/12
Paper 1 Pure Mathematics 1
May/June 2020
MARK SCHEME
Maximum Mark: 75
Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively

- Marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	$(2+3 x)\left(x-\frac{2}{x}\right)^{6}$ Term in x^{2} in $\left(x-\frac{2}{x}\right)^{6}=15 x^{4} \times\left(\frac{-2}{x}\right)^{2}$	B1
	Coefficient $=60$	B1
		2
1(b)	Constant term in $\left(x-\frac{2}{x}\right)^{6}=20 x^{3} \times\left(\frac{-2}{x}\right)^{3}(-160)$	B2, 1
	Coefficient of x^{2} in $(2+3 x)\left(x-\frac{2}{x}\right)^{6}=120-480=-360$	B1FT
		3

Question	Answer	Marks
2(a)	$3 \cos \theta=8 \tan \theta \rightarrow 3 \cos \theta=\frac{8 \sin \theta}{\cos \theta}$	M1
	$3\left(1-\sin ^{2} \theta\right)=8 \sin \theta$	M1
	$3 \sin ^{2} \theta+8 \sin \theta-3=0$	A1
		3
2(b)	$(3 \sin \theta-1)(\sin \theta+3)=0 \rightarrow \sin \theta=1 / 3$	M1
	$\theta=19.5^{\circ}$	A1
		2

Question	Answer	Marks
3(a)	Volume after $30 \mathrm{~s}=18000 \quad \frac{4}{3} \pi r^{3}=18000$	M1
	$r=16.3 \mathrm{~cm}$	A1
		2
3(b)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$	B1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{600}{4 \pi r^{2}}$	M1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.181 \mathrm{~cm} \text { per second }$	A1
		3

Question	Answer	Marks
4	1 st term is -6 , 2 nd term is -4.5 (M1 for using k th terms to find both a and d)	M1
	$\rightarrow a=-6, d=1.5$	A1 A1
	$S_{n}=84 \rightarrow 3 n^{2}-27 n-336=0$	M1
	Solution $n=16$	A1
		5

Question	Answer	Marks
5(a)	$\mathrm{ff}(x)=a-2(a-2 x)$	M1
	$\mathrm{ff}(x)=4 x-a$	A1
	$\mathrm{f}^{-1}(x)=\frac{a-x}{2}$	M1 A1
		4
5(b)	$4 x-a=\frac{a-x}{2} \rightarrow 9 x=3 a$	M1
	$x=\frac{a}{3}$	A1
		2

Question	Answer	Marks
6(a)	$2 x^{2}+k x+k-1=2 x+3 \rightarrow 2 x^{2}+(k-2) x+k-4=0$	M1
	Use of $b^{2}-4 a c=0 \rightarrow(k-2)^{2}=8(k-4)$	M1
	$k=6$	A1
		3
6(b)	$\begin{aligned} & 2 x^{2}+2 x+1=2\left(x+\frac{1}{2}\right)^{2}+1-\frac{1}{2} \\ & a=\frac{1}{2}, b=\frac{1}{2} \end{aligned}$	B1 B1
	vertex $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (FT on a and b values)	B1FT
		3

Question	Answer	Marks
7(a)	$B C^{2}=r^{2}+4 r^{2}-2 r .2 r \times \cos \left(\frac{\pi}{6}\right)=5 r^{2}-2 r^{2} \sqrt{ } 3$	M1
	$B C=r \sqrt{(5-2 \sqrt{3})}$	A1
		2
7(b)	$\text { Perimeter }=\frac{2 \pi r}{6}+r+r \sqrt{(5-2 \sqrt{3})}$	M1 A1
		2
7(c)	Area $=$ sector - triangle	
	$\text { Sector area }=\frac{1}{2} 4 r^{2} \frac{\pi}{6}$	M1
	$\text { Triangle area }=1 / 2 r \cdot 2 r \sin \frac{\pi}{6}$	M1
	Shaded area $=r^{2}\left(\frac{\pi}{3}-\frac{1}{2}\right)$	A1
		3

Question	Answer	Marks
8(a)	$\text { Volume }=\pi \int x^{2} \mathrm{~d} y=\pi \int \frac{36}{y^{2}} \mathrm{~d} y$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly $\rightarrow(12 \pi)$	DM1
	Vol of cylinder $=\pi .1^{2} .4$ or $\int 1^{2} . \mathrm{d} y \quad=[y]$ from 2 to 6	M1
	$\mathrm{Vol}=12 \pi-4 \pi=8 \pi$	A1
		5
8(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6}{x^{2}}$	B1
	$\frac{-6}{x^{2}}=-2 \rightarrow x=\sqrt{3}$	M1
	$y=\frac{6}{\sqrt{3}}=2 \sqrt{3} \quad \text { Lies on } y=2 x$	A1
		3

Question	Answer	Marks
9(a)	$\mathrm{f}(x)$ from -1 to 5	B1B1
	$\mathrm{g}(x)$ from -10 to 2 (FT from part (a))	B1FT
		3
9(b)		B2, 1
		2
9(c)	Reflect in x-axis	B1
	Stretch by factor 2 in the y direction	B1
	Translation by $-\pi$ in the x direction OR translation by $\binom{0}{-\pi}$.	B1
		3

Question	Answer	Marks
10(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=54-6(2 x-7)^{2}$	B2,1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-24(2 x-7)$ (FT only for omission of ' $\times 2$ ' from the bracket)	B2,1 FT
		4
10(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow(2 x-7)^{2}=9$	M1
	$x=5, y=243$ or $x=2, y=135$	A1 A1
		3
10(c)	$x=5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-72 \rightarrow \text { Maximum }$ (FT only for omission of ' $\times 2$ ' from the bracket)	B1FT
	$x=2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=72 \rightarrow \text { Minimum }$ (FT only for omission of ' $\times 2$ ' from the bracket)	B1FT
		2

Question	Answer	Marks
11(a)	Express as $(x-4)^{2}+(y+2)^{2}=16+4+5$	M1
	Centre $C(4,-2)$	A1
	Radius $=\sqrt{25}=5$	A1
		3
11(b)	$P(1,2)$ to $C(4,-2)$ has gradient $-\frac{4}{3}$ (FT on coordinates of C)	B1FT
	$\text { Tangent at } P \text { has gradient }=\frac{3}{4}$	M1
	Equation is $y-2=\frac{3}{4}(x-1)$ or $4 y=3 x+5$	A1
		3
11(c)	Q has the same coordinate as $P y=2$	B1
	Q is as far to the right of C as $P x=3+3+1=7 Q(7,2)$	B1
		2

Question	Answer	Marks
11(d)	Gradient of tangent at $Q=-\frac{3}{4}$ by symmetry (FT from part (b))	B1FT
	Eqn of tangent at Q is $y-2=-\frac{3}{4}(x-7)$ or $4 y+3 x=29$	M1
	$T\left(4, \frac{17}{4}\right)$	A1
		3

Cambridge International AS \& A Level

MATHEMATICS

9709/13
Paper 1 Pure Mathematics 1
May/June 2020
MARK SCHEME
Maximum Mark: 75
Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- Marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1	$3 x^{2}+2 x+4=m x+1 \rightarrow 3 x^{2}+x(2-m)+3(=0)$	B1
	$(2-m)^{2}-36$ SOI	M1
	$(m+4)(m-8)(>/=0)$ or $2-m>/=6$ and $2-m</=-6 \mathrm{OE}$	A1
	$m<-4, m>8$ WWW	A1

Alternative method for question 1

$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x+2 \rightarrow m=6 x+2 \rightarrow 3 x^{2}+2 x+4=(6 x+2) x+1$	M1	
$x= \pm 1$	A1	A1
$m= \pm 6+2 \rightarrow m=8$ or -4	A1	
$m<-4, m>8$ WWW	$\mathbf{4}$	

Question	Answer	Marks
2	$(y)=\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{3 x^{\frac{1}{2}}}{\frac{1}{2}}(+c)$	B1 B1
	$7=16-12+c$ $(M 1$ for subsituting $x=4, y=7$ into their integrated expansion $)$	M1
	$y=2 x^{\frac{3}{2}}-6 x^{\frac{1}{2}}+3$	A1
		4

Question	Answer	Marks
$3(\mathrm{a})$	$(y)=\mathrm{f}(-x)$	B1
$3(\mathrm{~b})$	$(y)=2 \mathrm{f}(x)$	$\mathbf{1}$
		B1
	$(y)=\mathrm{f}(x+4)-3$	$\mathbf{1}$
		B1 B1

Question	Answer	Marks
4(a)	$1+5 a+10 a^{2}+10 a^{3}+\ldots$	B1
		1
4(b)	$1+5\left(x+x^{2}\right)+10\left(x+x^{2}\right)^{2}+10\left(x+x^{2}\right)^{3}+\ldots$ SOI	M1
	$1+5\left(x+x^{2}\right)+10\left(x^{2}+2 x^{3}+\ldots\right)+10\left(x^{3}+\ldots\right)+\ldots$ SOI	A1
	$1+5 x+15 x^{2}+30 x^{3}+\ldots$	A1
		3

Question	Answer	Marks
5	$\begin{aligned} & \cos P O A=\frac{5}{13} \rightarrow P O A=1.17(6) \quad \text { Allow } 67.4^{\circ} \\ & \text { or } \sin =\frac{12}{13} \text { or } \tan =\frac{12}{5} \end{aligned}$	M1 A1
	Reflex $A O B=2 \pi-2 \times$ their $1.17(6) \quad$ OE in degrees or minor arc $\mathrm{AB}=5 \times 2 \times$ their 1.17 (6)	M1
	Major arc $=5 \times$ their 3.93(1) or $2 \pi \times 5$ - their 11.7(6)	M1
	$A P($ or $B P)=\sqrt{13^{2}-5^{2}}=12$	B1
	Cord length $=43.7$	A1
		6

Question	Answer	Marks
6(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(5 x-1)^{-1 / 2}\right] \times[5]$	B1 B1
	Use $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \times\left(\right.$ their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $\left.x=1\right)$	M1
	$\frac{5}{2}$	A1
		4

Question		Answer	Marks
6(b)	$2 \times$ their $\frac{5}{2}(5 x-1)^{-1 / 2}=\frac{5}{8} \quad$ oe		M1
	$(5 x-1)^{1 / 2}=8$		A1
	$x=13$		A1
			3

Question		Answer	Marks
7(a)	$\frac{\tan \theta}{1+\cos \theta}+\frac{\tan \theta}{1-\cos \theta}=\frac{\tan \theta(1-\cos \theta)+\tan \theta(1+\cos \theta)}{1-\cos \theta}$		M1
	$\overline{1+\cos \theta}+\overline{1-\cos \theta}=\frac{1-\cos ^{2} \theta}{}$		
	$=\frac{2 \tan \theta}{\sin ^{2} \theta}$		M1
	$=\frac{2 \sin \theta}{\cos \theta \sin ^{2} \theta}$		M1
	$=\frac{2}{\sin \theta \cos \theta} \mathbf{A G}$		A1
			4

Question		Answer	Marks
7(b)	$\frac{2}{\sin \theta \cos \theta}=\frac{6 \cos \theta}{\sin \theta}$		M1
	$\cos ^{2} \theta=\frac{1}{3} \rightarrow \cos \theta=(\pm) 0.5774$		A1
	$54.7^{\circ}, 125.3^{\circ}$ (FT for $180^{\circ}-1$ st solution)		$\begin{array}{r} \text { A1 } \\ \text { A1FT } \end{array}$
			4

Question	Answer	Marks
8(a)	$r=\cos ^{2} \theta$ SOI	M1
	$S_{\infty}=\frac{\sin ^{2} \theta}{1-\cos ^{2} \theta}$	M1
	1	A1
		3
8(b)(i)	$d=\sin ^{2} \theta \cos ^{2} \theta-\sin ^{2} \theta$	M1
	$\sin ^{2} \theta\left(\cos ^{2} \theta-1\right)$	M1
	$-\sin ^{4} \theta$	A1
		3

Question	Answer	Marks
8(b)(ii)	Use of $S_{16}=\frac{16}{2}[2 a+15 d]$	M1
	With both $a=\frac{3}{4}$ and $d=-\frac{9}{16}$	A1
	$S_{16}=-55 \frac{1}{2}$	A1
		3

Question	Answer	Marks
9(a)	$\left[(x-2)^{2}\right][-1]$	B1 B1
		2
9(b)	Smallest $c=2$ (FT on their part (a))	B1FT
		1
9(c)	$y=(x-2)^{2}-1 \rightarrow(x-2)^{2}=y+1$	*M1
	$x=2(\pm) \sqrt{y+1}$	DM1
	$\left(\mathrm{f}^{-1}(x)\right)=2+\sqrt{x+1}$ for $x>8$	A1
		3

Question		Answer
$9(\mathrm{~d})$	$\operatorname{gf}(x)=\frac{1}{(x-2)^{2}-1+1}=\frac{1}{(x-2)^{2}} \quad$ OE	Barks
	Range of gf is $0<\operatorname{gf}(x)<\frac{1}{9}$	B1 B1
		3
		3

Question	Answer	Marks
10(a)	Mid-point is $(-1,7)$	B1
	Gradient, m, of $A B$ is $8 / 12$ OE	B1
	$y-7=-\frac{12}{8}(x+1)$	M1
	$3 x+2 y=11$ AG	A1
		4
10(b)	Solve simultaneously $12 x-5 y=70$ and their $3 x+2 y=11$	M1
	$x=5, y=-2$	A1
	Attempt to find distance between their $(5,-2)$ and either $(-7,3)$ or $(5,11)$	M1
	$(r)=\sqrt{12^{2}+5^{2}}$ or $\sqrt{13^{2}+0}=13$	A1
	Equation of circle is $(x-5)^{2}+(y+2)^{2}=169$	A1
		5

Question	Answer	Marks
11(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 b x+b^{2}$	B1
	$3 x^{2}-4 b x+b^{2}=0 \rightarrow(3 x-b)(x-b)(=0)$	M1
	$x=\frac{b}{3} \text { or } b$	A1
	$a=\frac{b}{3} \rightarrow b=3 a \quad \mathbf{A G}$	A1
	Alternative method for question 11(a)	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 b x+b^{2}$	B1
	Sub $b=3 a \&$ obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=a$ and when $x=3 a$	M1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-12 a$	A1
	<0 Max at $x=a$ and >0 Min at $x=3 a$. Hence $b=3 a$ AG	A1
		4

Question	Answer	Marks
11(b)	Area under curve $=\int\left(x^{3}-6 a x^{2}+9 a^{2} x\right) \mathrm{d} x$	M1
	$\frac{x^{4}}{4}-2 a x^{3}+\frac{9 a^{2} x^{2}}{2}$	B2,1,0
	$\frac{a^{4}}{4}-2 a^{4}+\frac{9 a^{4}}{2}\left(=\frac{11 a^{4}}{4}\right)$ (M1 for applying limits $0 \rightarrow a$)	M1
	When $x=a, y=a^{3}-6 a^{3}+9 a^{3}=4 a^{3}$	B1
	Area under line $=\frac{1}{2} a \times$ their $4 a^{3}$	M1
	$\text { Shaded area }=\frac{11 a^{4}}{4}-2 a^{4}=\frac{3}{4} a^{4}$	A1
		7

Cambridge International AS \& A Level

MATHEMATICS

9709/11
Paper 1 Pure Mathematics 1
May/June 2021
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions)

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$[y=]-\frac{1}{x^{3}}+8 x^{4}[+c]$	B1 B1	OE. Accept unsimplified.
	$4=-8+\frac{1}{2}+c$	M1	Substituting $\left(\frac{1}{2}, 4\right)$ into an integrated expression
	$y=-\frac{1}{x^{3}}+8 x^{4}+\frac{23}{2}$	A1	OE. Accept $-x^{-3}$; must be $8 ; y=$ must be seen in working.
		4	

Question	Answer	Marks	
2	$10(2 a+19 d)=405$	B1	
	$20(2 a+39 d)=1410$	B1	
	Solving simultaneously two equations obtained from using the correct sum formulae $[a=6, d=1.5]$	M1	Reach $a=$ or $d=$
	Using the correct formula for 60 th term with their a and d	M1	
	60th term $=94.5$	A1	OE, e.g. $\frac{189}{2}$

Question	Answer	Marks	Guidance
3(a)	243	B1	
	$-810 x$	B1	
	$+1080 x^{2}$	B1	
		3	
3(b)	$(4+x)^{2}=16+8 x+x^{2}$	B1	
	Coefficient of x^{2} is $16 \times 1080+8 \times(-810)+243$	M1	Allow if at least 2 pairs used correctly
	11043	A1	Allow 11043x ${ }^{2}$
		3	

Question	Answer	Marks	
4	$a=2$	B1	
	$b=\frac{\pi}{4}$	B1	or $\frac{2 \pi}{8}$
	$c=1$	B1	
		3	

Question	Answer	Marks	Guidance
5	$(-12)^{2}=8 k \times 2 k$	M1	Forming an equation in k
	$k=-3$	A1	
	Using correct formula for $\mathrm{S}_{\infty}[r=0.5, a=-384]$	M1	With $-1<r<1$
	$\mathrm{S}_{\infty}=-768$	A1	
	Alternative method for Question 5		
	$r^{2}=\frac{2 k}{8 k}$	M1	
	$r=[\pm] 0.5$	A1	
	Using correct formula for $\mathrm{S}_{\infty}[r=0.5, a=-384]$	M1	$-1<r<1$
	$\mathrm{S}_{\infty}=-768$	A1	
		4	

Question	Answer	Marks	Guidance
6	$(2 k-3) x^{2}-k x-(k-2)=3 x-4$	*M1	Equating curve and line
	$(2 k-3) x^{2}-(k+3) x-(k-6)[=0]$	DM1	Forming a 3-term quadratic
	$(k+3)^{2}+4(2 k-3)(k-6)[=0]$	DM1	Use of discriminant (dependent on both previous M marks)
	$9 k^{2}-54 k+81[=0]\left[\right.$ leading to $\left.k^{2}-6 k+9=0\right]$	M1	Simplifying and solving their 3-term quadratic in k
	$k=3$	A1	
	Alternative method for Question 6		
	$(2 k-3) x^{2}-k x-(k-2)=3 x-4$	*M1	Equating curve and line
	$2(2 k-3) x-k=3 \Rightarrow x=\frac{k+3}{4 k-6} \text { or } k=\frac{3+6 x}{4 x-1}$	DM1	Differentiating and solving for x or k
	$\begin{aligned} & \text { Either }(2 k-3)\left(\frac{k+3}{4 k-6}\right)^{2}-k\left(\frac{k+3}{4 k-6}\right)-(k-2)=3\left(\frac{k+3}{4 k-6}\right)-4 \\ & \text { Or } 4 x\left(\frac{3 x^{2}+3 x-6}{2 x^{2}-x-1}\right)-6 x-\left(\frac{3 x^{2}+3 x-6}{2 x^{2}-x-1}\right)=3 \end{aligned}$	DM1	Substituting their x into equation or their $k=\frac{3 x^{2}+3 x-6}{2 x^{2}-x-1}$ or $k=\frac{3 x+6}{2 x+1}$ into derivative equation (dependent on both previous M marks)
	$9 k^{2}-54 k+81[=0]\left[\right.$ eading to $\left.k^{2}-6 k+9=0\right]$	M1	Simplifying and solving their 3 -term quadratic in k (or solving for x)
	$k=3$	A1	
			SC If M0, B1 for differentiating, equating to 3 and solving for x or k
		5	

Question	Answer	Marks	Guidance
7(a)	Reach $\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}$ or $\frac{1-\sin ^{2} \theta}{1-\sin ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ or $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}-2 \tan ^{2} \theta$ or $\sec ^{2} \theta-\frac{2 \sin ^{2} \theta}{\cos ^{2} \theta}$ or $2-\sec ^{2} \theta$ or $\frac{\cos 2 \theta}{\cos ^{2} \theta}$	M1	May start with $1-\tan ^{2} \theta$
	$1-\tan ^{2} \theta$	A1	AG, must show sufficient stages
		2	
7(b)	$1-\tan ^{2} \theta=2 \tan ^{4} \theta \Rightarrow 2 \tan ^{4} \theta+\tan ^{2} \theta-1[=0]$	M1	Forming a 3-term quadratic in $\tan ^{2} \theta$ or e.g. u
	$\tan ^{2} \theta=0.5$ or -1 leading to $\tan \theta=[\pm] \sqrt{0.5}$	M1	
	$\theta=35.3^{\circ}$ and $144.7^{\circ}(\mathrm{AWRT})$	A1	Both correct. Radians $0.615,2.53$ scores A0.
		3	

Question	Answer	Marks	Guidance
8(a)	Either Let midpoint of $P Q$ be $H: \sin H C P=\frac{2}{4} \Rightarrow$ Angle $H C P=\frac{\pi}{6}$ Or $\sin P S Q=\frac{4}{8} \Rightarrow$ Angle $P S Q=\frac{\pi}{6}$ Or using cosine rule: angle $P C Q=\frac{\pi}{3}$ Or by inspection: triangle $P C Q$ or $P C T$ is equilateral so angle $P C Q=\frac{\pi}{3}$	M1	
	Angle $P C S=\pi-\frac{\pi}{6}-\frac{\pi}{6}=\frac{2}{3} \pi$	A1	AG
		2	
8(b)	$\text { Perimeter }=2 \times 4 \times \frac{2 \pi}{3} \text { or } 8 \pi-\frac{8 \pi}{3}$	M1	Length of two arcs $P S$ and $Q R$
	$+2 \pi \times 2$	M1	Adding circumference of two semicircles
	$\frac{28 \pi}{3}$	A1	Must be a single term
		3	

Question	Answer	Marks	Guidance
8(c)	Area sector $C P Q=\frac{1}{2} \times 4^{2} \times \frac{\pi}{3}=\frac{8 \pi}{3}$	M1	Uses correct formula for sector
	Area of segment of large circle beyond $C P Q$ $=\frac{8 \pi}{3}-\frac{1}{2} \times 4^{2} \times \sin \left(\frac{\pi}{3}\right)=\frac{8 \pi}{3}-4 \sqrt{3}$	M1	Attempts to find area of segment
	Area of small semicircle $=\pi \times 2 \quad$ or area of small circle $=\pi \times 2^{2}$	M1	
	Area of plate $=$ Large circle $-[2 \times]$ small semicircle $-[2 \times]$ segment area	M1	
	$\pi \times 4^{2}-\pi \times 2^{2}-2 \times\left(\frac{8 \pi}{3}-4 \sqrt{3}\right)=\frac{20 \pi}{3}+8 \sqrt{3}$	A1	AG
	Alternative method for Question 8(c)		
	Area of sector $P C S=\frac{1}{2} \times 4^{2} \times \frac{2 \pi}{3}=\frac{16 \pi}{3}$	M1	Uses correct formula for sector
	Area of triangle $P C Q=\frac{1}{2} \times 4^{2} \times \sin \frac{\pi}{3}=4 \sqrt{3}$	M1	Uses correct formula for triangle
	Area of small semicircle $=\pi \times 2 \quad$ or area of circle $=\pi \times 2^{2}$	M1	
	Area of plate $=[2 \times]$ large sector $+[2 \times]$ triangle $-[2 \times]$ small semicircle	M1	
	$2\left(\frac{16 \pi}{3}\right)+2(4 \sqrt{3})-\pi \times 2^{2}=\frac{20 \pi}{3}+8 \sqrt{3}$	A1	AG
		5	

Question	Answer	Marks	Guidance
9(a)	Range of f is $\mathrm{f}(x) \geqslant-4$	B1	Allow y, f or 'range' or $[-4, \infty)$
		1	
9(b)	$y=(x-2)^{2}-4 \Rightarrow(x-2)^{2}=y+4 \Rightarrow x-2=+\sqrt{(y+4)}$ or $\pm \sqrt{(y+4)}$	M1	May swap variables here
	$\left[\mathrm{f}^{-1}(x)\right]=\sqrt{(x+4)}+2$	A1	
		2	
9(c)	$(x-2)^{2}-4=-\frac{5}{3} x+2 \Rightarrow x^{2}-4 x+4-4=-\frac{5}{3} x+2\left[\Rightarrow x^{2}-\frac{7}{3} x-2=0\right]$	M1	Equating and simplifying to a 3-term quadratic
	$(3 x+2)(x-3)[=0] \text { or } \frac{7 \pm \sqrt{7^{2}-4(3)(-6)}}{6} \text { OE }$	M1	Solving quadratic
	$x=3$ only	A1	
		3	

Question	Answer	Marks	Guidance
9(d)	$\mathrm{f}^{-1}(12)=6$	M1	Substitute 12 into their $\mathrm{f}^{-1}(x)$ and evaluate
	$\mathrm{g}\left(\mathrm{f}^{-1}(12)\right)=6 a+2$	M1	Substitute their '6' into $\mathrm{g}(x)$
	$\mathrm{g}\left(\mathrm{g}\left(\mathrm{f}^{-1}(12)\right)\right)=a(6 a+2)+2=62$	M1	Substitute the result into $\mathrm{g}(x)$ and $=62$
	$6 a^{2}+2 a-60[=0]$	M1	Forming and solving a 3-term quadratic
	$a=-\frac{10}{3} \text { or } 3$	A1	
	Alternative method for Question 9(d)		
	$\mathrm{g}\left(\mathrm{f}^{-1}(x)\right)=a(\sqrt{x+4}+2)+2$ or $\operatorname{gg}(x)=a(a x+2)+2$	M1	Substitute their $\mathrm{f}^{1}(x)$ or $\mathrm{g}(x)$ into $\mathrm{g}(x)$
	$\mathrm{g}\left(\mathrm{g}\left(\mathrm{f}^{-1}(x)\right)\right)=a(a(\sqrt{x+4}+2)+2)+2$	M1	Substitute the result into $\mathrm{g}(x)$
	$\mathrm{g}\left(\mathrm{g}\left(\mathrm{f}^{-1}(12)\right)\right)=a(6 a+2)+2=62$	M1	Substitute 12 and = 62
	$6 a^{2}+2 a-60[=0]$	M1	Forming and solving a 3-term quadratic
	$a=-\frac{10}{3} \text { or } 3$	A1	
		5	

Question	Answer	Marks	Guidance
$10(\mathrm{a})$	When $y=0$	$x^{2}-4 x-77=0\left[\Rightarrow(x+7)(x-11)=0\right.$ or $\left.(x-2)^{2}=81\right]$	M1
	So x-coordinates are -7 and 11	Substituting $y=0$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
10(b)	Centre of circle C is (2, -3)	B1	
	Gradient of $A C$ is $-\frac{1}{3}$ or Gradient of $B C$ is $\frac{1}{3}$	M1	For either gradient (M1 sign error, M0 if x-coordinate(s) in numerator)
	Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either perpendicular gradient
	Equations of tangents are $y=3 x+21, y=-3 x+33$	A1	For either equation
	Meet when $3 x+21=-3 x+33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
	Coordinates of point of intersection (2,27)	A1	
	Alternative method for Question 10(b)		
	Implicit differentiation: $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ seen	B1	
	$2 x-4+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	M1	Fully differentiated $=0$ with at least one term involving y differentiated correctly
	Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either gradient
	Equations of tangents are $y=3 x+21, y=-3 x+33$	A1	For either equation
	Meet when $3 x+21=-3 x+33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
	Coordinates of point of intersection (2,27)	A1	
		6	

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3(3 x+4)^{-0.5}-1$	B1 B1	B1 All correct with 1 error, B2 if all correct
	Gradient of tangent $=-\frac{1}{4}$ and Gradient of normal $=4$	*M1	Substituting $x=4$ into a differentiated expression and using $m_{1} m_{2}=-1$
	Equation of line is $(y-4)=4(x-4)$ or evaluate c	DM1	With (4, 4) and their gradient of normal
	So $y=4 x-12$	A1	
		5	
11(b)	$3(3 x+4)^{-0.5}-1=0$	M1	Setting their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	Solving as far as $x=$	M1	Where $\frac{\mathrm{d} y}{\mathrm{~d} x}$ contains $a(b x+c)^{-0.5} a, b, c$ any values
	$x=\frac{5}{3}, \quad y=2\left(3 \times \frac{5}{3}+4\right)^{0.5}-\frac{5}{3}=\frac{13}{3}$	A1	
		3	
11(c)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{9}{2}(3 x+4)^{-1.5}$	M1	Differentiating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ OR checking $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to find +ve and -ve either side of their $x=\frac{5}{3}$
	At $x=\frac{5}{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ is negative so the point is a maximum	A1	
		2	

Question	Answer	Marks	Guidance
$11(\mathrm{~d})$	Area $=\left[\int 2(3 x+4)^{0.5}-x \mathrm{~d} x=\right] \frac{4}{9}(3 x+4)^{1.5}-\frac{1}{2} x^{2}$	B1 B1	B1 for each correct term (unsimplified)
	$\left(\frac{4}{9}(16)^{1.5}-\frac{1}{2}(4)^{2}\right)-\frac{4}{9}(4)^{1.5}=\frac{256}{9}-8-\frac{32}{9}$	M1	Substituting limits 0 and 4 into an expression obtained by integrating y
	$16 \frac{8}{9}$	A1	Or $\frac{152}{9}$
		4	

Cambridge International AS \& A Level

MATHEMATICS

9709/12
Paper 1 Pure Mathematics 1
May/June 2021
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$(4 x-3)^{2}$ or $(4 x+(-3))^{2}$ or $a=-3$	B1	$k(4 x-3)^{2}$ where $k \neq 1$ scores B0 but mark final answer, allow recovery.
	+1 or $b=1$	B1	
		2	
1(b)	[For one root] $k=1$ or 'their b '	B1 FT	Either by inspection or solving or from $24^{2}-4 \times 16 \times(10-k)=0 \quad$ WWW
	[Root or $x=] \frac{3}{4}$ or 0.75	B1	SC B2 for correct final answer WWW.
		2	

Question	Answer	Marks	Guidance
2(a)	$\text { Translation }\binom{1}{0}$	B1	Allow shift and allow by 1 in x-direction or [parallel to/on/in/ along/against] the x-axis or horizontally. 'Translation by 1 to the right' only, scores B0
	Stretch	B1	Stretch. SC B2 for amplitude doubled.
	Factor 2 in y-direction	B1	With/by factor 2 in y-direction or [parallel to/on/in/along/against] the y-axis or vertically or with x axis invariant 'With/by factor 2 upwards' only, scores B0. Accept SF as an abbreviation for scale factor.
		3	Note: Transformations can be in either order
2(b)	$[-\sin 6 x][+15 x]$ or $[\sin (-6 x)][+15 x]$ OE	B1 B1	Accept an unsimplified version. ISW. B1 for each correct component - square brackets indicate each required component.
			If B $0, \mathbf{S C} \mathbf{B 1}$ for either $\sin (-2 x)+5 x$ or $-\sin (2 x)+5 x$ or $\sin 6 x-15 x$ or $\sin \left(-\frac{2}{3} x\right)+\frac{5}{3} x$
		2	

Question	Answer	Marks	Guidance
3(a)	1.2679	B1	AWRT. ISW if correct answer seen. $3-\sqrt{3}$ scores B0
		1	
3(b)	1.7321	B1	AWRT. ISW if correct answer seen.
		1	
3(c)	Sight of 2 or 2.0000 or two in reference to the gradient	*B1	
	This is because the gradient at E is the limit of the gradients of the chords as the x-value tends to 3 or ∂x tends to 0 .	DB1	Allow it gets nearer/approaches/tends/almost/approximately 2
		2	

Question	Answer	Marks	Guidance
4	[Coefficient of x or $p=$] 480	B1	SOI. Allow 480x even in an expansion.
	$\left[\operatorname{Term} \text { in } \frac{1}{x} \text { or } q=\right][10 \times](2 x)^{3}\left(\frac{k}{x^{2}}\right)^{2}$	M1	Appropriate term identified and selected.
	$\left[10 \times 2^{3} k^{2}=\right] 80 k^{2}$	A1	Allow $\frac{80 k^{2}}{x}$
	$p=6 q \operatorname{used}\left(480=6 \times 80 k^{2}\right.$ or $\left.80=80 k^{2}\right)$	M1	Correct link used for their coefficient of x and $\frac{1}{x}(p$ and $q)$ with no x 's.
	$\left[k^{2}=1 \Rightarrow\right] k= \pm 1$	A1	A0 if a range of values given. Do not allow $\pm \sqrt{1}$.
		5	

Question	Answer	Marks	Guidance
5(a)	$\mathrm{ff}(x)=2\left(2 x^{2}+3\right)^{2}+3$	M1	Condone $=0$.
	$8 x^{4}+24 x^{2}+21$	A1	ISW if correct answer seen. Condone $=0$.
		2	
5(b)	$8 x^{4}+24 x^{2}+21=34 x^{2}+19 \Rightarrow 8 x^{4}+24 x^{2}-34 x^{2}+21-19[=0]$	M1	Equating $34 x^{3}+19$ to their 3 -term $\mathrm{ff}(x)$ and collect all terms on one side condone \pm sign errors.
	$8 x^{4}-10 x^{2}+2[=0]$	A1	
	[2] $\left(x^{2}-1\right)\left(4 x^{2}-1\right)$	M1	Attempt to solve 3-term quartic or 3-term quadratic by factorisation, formula or completing the square or factor theorem.
	$\left[x^{2}=1 \text { or } \frac{1}{4} \text { leading to }\right] x=1 \text { or } x=\frac{1}{2}$	A1	If factorising, factors must expand to give $8 x^{4}$ or $4 x^{4} 4$ or their ax otherwise M0A0 due to calculator use. Condone $\pm 1, \pm \frac{1}{2}$ but not $\sqrt{\frac{1}{4}}$ or $\sqrt{1}$.
		4	

Question	Answer	Marks	Guidance
6	Gradient $\mathrm{AB}=\frac{1}{2}$	B1	SOI
	Lines meet when $-2 x+4=\frac{1}{2}(x-8)+3$ Solving as far as $x=$	*M1	Equating given perpendicular bisector with the line through $(8,3)$ using their gradient of $A B$ (but not -2) and solving. Expect $x=2, y=0$.
	Using mid-point to get as far as $p=$ or $q=$	DM1	Expect $\frac{8+p}{2}=2$ or $\frac{3+q}{2}=0$
	$p=-4, q=-3$	A1	Allow coordinates of B are ($-4,-3$).
	Alternative method for Question 6		
	Gradient $\mathrm{AB}=\frac{1}{2}$	B1	SOI
	$\begin{aligned} & \frac{q-3}{p-8}=\frac{1}{2} \quad[\text { leading to } 2 q=p-2] \\ & \frac{q+3}{2}=-2\left(\frac{8+p}{2}\right)+4 \quad[\text { leading to } q=-11-2 p] \end{aligned}$	*M1	Equating gradient of $A B$ with their gradient of $A B$ (but not -2) and using mid-point in equation of perpendicular bisector.
	Solving simultaneously their 2 linear equations	DM1	Equating and solving 2 correct equations as far as $p=$ or $q=$.
	$p=-4, q=-3$	A1	Allow coordinates of B are ($-4,-3$).

Question	Answer	Marks	Guidance
6	Alternative method for Question 6		
	Gradient $\mathrm{AB}=\frac{1}{2}$	B1	
	$\frac{q-3}{p-8}=\frac{1}{2} \quad[$ leading to $p=2 q+2]$, $y-\frac{q+3}{2}=-2(x-(q+5))\left[\right.$ leading to $\left.y=-2 x+\frac{5 q+23}{2}\right]$	*M1	Equating gradient of $A B$ with their gradient of $A B$ (but not -2) and using mid-point in equation of perpendicular bisector.
	their $\frac{5 q+23}{2}=4 \Rightarrow q=$	DM1	Equating and solving as far as q or $p=$
	$p=-4, q=-3$	A1	Allow coordinates of B are ($-4,-3$).
		4	

Question	Answer	Marks	Guidance
7(a)	$(5-1)^{2}+(11-5)^{2}=52$ or $\frac{11-5}{5-1}$	M1	For substituting $(1,5)$ into circle equation or showing gradient $=\frac{3}{2}$.
	For both circle equation and gradient, and proving line is perpendicular and stating that A lies on the circle	A1	Clear reasoning.
	Alternative method for Question 7(a)		
	$(x-5)^{2}+(y-11)^{2}=52$ and $y-5=-\frac{2}{3}(x-1)$	M1	Both equations seen and attempt to solve. May see $y=-\frac{2}{3} x+\frac{17}{3}$
	Solving simultaneously to obtain $(y-5)^{2}=0$ or $(x-1)^{2}=0 \Rightarrow 1$ root or tangent or discriminant $=0 \Rightarrow 1$ root or tangent	A1	Clear reasoning.
	Alternative method for Question 7(a)		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{10-2 x}{2 y-22}=\frac{10-2}{10-22}$	M1	Attempting implicit differentiation of circle equation and substitute $x=1$ and $y=5$.
	Showing gradient of circle at A is $-\frac{2}{3}$	A1	Clear reasoning.
		2	
7(b)	Centre is ($-3,-1$)	B1 B1	B1 for each correct co-ordinate.
	Equation is $(x+3)^{2}+(y+1)^{2}=52$	B1 FT	FT their centre, but not if either $(1,5)$ or $(5,11)$. Do not accept $\sqrt{52^{2}}$.
		3	

Question	Answer	Marks	Guidance
8(a)	$\left(a+b=2 \times \frac{3}{2} a\right) \Rightarrow b=2 a$	B1	SOI
	$18^{2}=a(b+3) \mathrm{OE}$ or 2 correct statements about r from the GP, e.g. $r=\frac{18}{a}$ and $\mathrm{b}+3=18 \mathrm{r}$ or $r^{2}=\frac{b+3}{a}$	B1	SOI
	$324=a(2 a+3) \Rightarrow 2 a^{2}+3 a-324[=0]$ or $b^{2}+3 b-648[=0]$ or $6 r^{2}-r-12[=0]$ or $4 d^{2}+3 d-162[=0]$	M1	Using the correct connection between AP and GP to form a 3-term quadratic with all terms on one side.
	$(a-12)(2 a+27)[=0]$ or $(b-24)(b+27)[=0]$ or $(2 r-3)(3 r+4)[=0]$ or $(d-6)(4 d+27)[=0]$	M1	Solving their 3-term quadratic by factorisation, formula or completing the square to obtain answers for a, b, r or d.
	$a=12, b=24$	A1	WWW. Condone extra 'solution' $a=-13.5, b=-27$ only.
		5	

Question	Answer	Marks	Guidance
$8(\mathrm{~b})$	Common difference $d=6$	B1 FT	SOI. FT their $\frac{a}{2}$
	$\mathrm{~S}_{20}=\frac{20}{2}(2 \times 12+19 \times 6)$	M 1	Using correct sum formula with their a, their calculated d and 20.
	1380	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
9	Curve intersects $y=1$ at (3,1$)$	B1	Throughout Question 9: $1<$ their $3<5$ Sight of $x=3$
	Volume $=[\pi] \int(x-2)[\mathrm{d} x]$	M1	M1 for showing the intention to integrate $(x-2)$. Condone missing π or using 2π.
	$[\pi]\left[\frac{1}{2} x^{2}-2 x\right]$ or $[\pi]\left[\frac{1}{2}(x-2)^{2}\right]$	A1	Correct integral. Condone missing π or using 2π.
	$\begin{aligned} & =[\pi]\left[\left(\frac{5^{2}}{2}-2 \times 5\right)-\left(\frac{\text { their } 3^{2}}{2}-2 \times \text { their } 3\right)\right] \\ & =[\pi]\left[\frac{5}{2}+\frac{3}{2}\right] \text { as a minimum requirement for their values } \end{aligned}$	M1	Correct use of 'their 3' and 5 in an integrated expression. Condone missing π or using 2π. Condone +c . Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
	Volume of cylinder $=\pi \times 1^{2} \times(5-$ their 3$)[=2 \pi]$	B1 FT	Or by integrating 1 to obtain x (condone y if 5 and their 3 used).
	[Volume of solid $=4 \pi-2 \pi=] 2 \pi$ or 6.28	A1	AWRT

Question	Answer	Marks	Guidance
9	Alternative method for Question 9		
	Curve intersects $y=1$ at $(3,1)$	B1	Sight of $x=3$
	Volume of solid $=\pi \int(x-2)-1[\mathrm{~d} x]$	M1 B1	M1 for showing the intention to integrate $(x-2)$ B1 for correct integration of -1 . Condone missing π or 2π for M1 but not for B1.
	$[\pi]\left[\frac{1}{2} x^{2}-3 x\right]$ or $[\pi]\left[\frac{1}{2}(x-3)^{2}\right]$	A1	Correct integral, allow as two integrals. Condone missing π or using 2π.
	$=[\pi]\left[\left(\frac{5^{2}}{2}-3 \times 5\right)-\left(\frac{\text { their } 3^{2}}{2}-3 \times\right.\right.$ their 3$\left.)\right]$	M1	Correct use of 'their 3 ' and 5 in an integrated expression. Condone missing π or using 2π. Condone +c . Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
	[Volume of solid $=4 \pi-2 \pi=] 2 \pi$ or 6.28	A1	AWRT
		6	

Question	Answer	Marks	Guidance
10(a)	$\frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} \equiv \frac{(1+\sin x)^{2}-(1-\sin x)^{2}}{(1-\sin x)(1+\sin x)}$	*M1	For using a common denominator of $(1-\sin x)(1+\sin x)$ and reasonable attempt at the numerator(s).
	$\equiv \frac{1+2 \sin x+\sin ^{2} x-\left(1-2 \sin x+\sin ^{2} x\right)}{(1-\sin x)(1+\sin x)}$	DM1	For multiplying out the numerators correctly. Condone sign errors for this mark.
	$\equiv \frac{4 \sin x}{1-\sin ^{2} x} \equiv \frac{4 \sin x}{\cos ^{2} x}$	DM1	For simplifying denominator to $\cos ^{2} x$.
	$\equiv \frac{4 \sin x}{\cos x \cos x} \equiv \frac{4 \tan x}{\cos x}$	A1	AG. Do not award A1 if undefined notation such as $\mathrm{s}, \mathrm{c}, \mathrm{t}$ or missing x 's used throughout or brackets are missing.
	Alternative method for Question 10(a)		
	$\frac{4 \tan x}{\cos x} \equiv \frac{4 \sin x}{\cos ^{2} x} \equiv \frac{4 \sin x}{1-\sin ^{2} x}$	*M1	Using $\tan x=\frac{\sin x}{\cos x}$ and $\cos ^{2} x=1-\sin ^{2} x$
	$\equiv \frac{-2}{1+\sin x}+\frac{2}{1-\sin x}$	DM1	Separating into partial fractions.
	$\equiv 1+\frac{-2}{1+\sin x}+\frac{2}{1-\sin x}-1$	DM1	Use of 1-1 or similar
	$\equiv-\frac{1-\sin x}{1+\sin x}+\frac{1+\sin x}{1-\sin x}$	A1	
		4	

Question	Answer	Marks	Guidance
$10(\mathrm{~b})$	$\cos x=\frac{1}{2}$	*B1	OE. WWW.
	$x=\frac{\pi}{3}$	DB1	Or AWRT 1.05
	$x=0$ from $\tan x=0$ or $\sin x=0$	B1	WWW. Condone extra solutions outside the domain 0 to $\frac{\pi}{2}$ but
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
11(a)	At stationary point $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ so $6(3 \times 2-5)^{3}-k \times 2^{2}=0$	M1	Setting given $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and substituting $x=2$ into it.
	$[k=] \frac{3}{2}$	A1	OE
		2	
11(b)	$[y=] \frac{6}{4 \times 3}(3 x-5)^{4}-\frac{1}{3} k x^{3}[+c]$.	$\begin{array}{r} \text { *M1 } \\ \text { A1FT } \end{array}$	Integrating (increase of power by 1 in at least one term) given $\frac{d y}{d x}$. Expect $\frac{1}{2}(3 x-5)^{4}-\frac{1}{2} x^{3}$. FT their non zero k.
	$\left.-\frac{7}{2}=\frac{1}{2}(3 \times 2-5)^{4}-\frac{1}{3} \times \frac{3}{2} \times 2^{3}+c \text { [leading to }-3.5+c=-3.5\right]$	DM1	Using $(2,-3.5)$ in an integrated expression. $+c$ needed. Substitution needs to be seen, simply stating $c=0$ is DM0.
	$y=\frac{1}{2}(3 x-5)^{4}-\frac{1}{2} x^{3}$	A1	$y=$ or $\mathrm{f}(x)=$ must be seen somewhere in solution.

Question	Answer	Marks	Guidance
11(b)	Alternative method for Question 11(b)		
	$[y=] \frac{81}{2} x^{4}-\frac{541}{2} x^{3}+675 x^{2}-750 x(+c)$ or $-270 x^{3}-k \frac{x^{3}}{3}$	$\begin{array}{r} \text { *M1 } \\ \text { A1 FT } \end{array}$	From $\frac{\mathrm{d} y}{\mathrm{~d} x}=162 x^{3}-810 x^{2}-k x^{2}-1350 x-750$. FT their k
	$-\frac{7}{2}=\frac{81}{2} \times 2^{4}-\frac{541}{2} \times 2^{3}+675 \times 2^{2}-750 \times 2+c$	DM1	Using (2, -3.5) in an integrated expression. $+c$ needed
	$y=\frac{81}{2} x^{4}-\frac{541}{2} x^{3}+675 x^{2}-750 x+\frac{625}{2}$	A1	$y=$ or $\mathrm{f}(x)=$ must be seen somewhere in solution.
		4	
11(c)	$[3 \times]\left[18(3 x-5)^{2}\right][-2 k x]$	B2, 1,0 FT	FT their k. Square brackets indicate each required component. B2 for fully correct, B1 for one error or one missing component, B0 for 2 or more errors.
	Alternative method for Question 11(c)		
	$486 x^{2}-1623 x+1350$ or $-1620 x-2 k x$	B2, 1,0 FT	FT their k. B 2 for fully correct, B 1 for one error, B 0 for 2 or more errors.
		2	
11(d)	$[$ At $x=2]\left[\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right] 54(3 \times 2-5)^{2}-4 k$ or 48	M1	OE. Substituting $x=2$ into their second differential or other valid method.
	[>0] Minimum	A1	WWW
		2	

Question	Answer	Marks	Guidance
12(a)	[By symmetry] [$6 \times P \hat{A} Q=2 \pi],[P \hat{A} Q=] 2 \pi \div 6$,	M1	
	Explaining that there are six sectors around the diagram that make up a complete circle.	A1	AG
	Alternative method for Question 12(a)		
	Using area or circumference of circle centre $A \div 6$	M1	$\frac{400 \pi}{6} \text { or } \frac{40 \pi}{6}$
	Justification for dividing by 6 followed by comparison with the sector area or arc length.	A1	AG
	Alternative method for Question 12(a)		
	Explain why $\triangle P A Q$ is an equilateral triangle	M1	Assumption of this scores M0
	Using $\triangle P A Q$ is an equilateral triangle $\therefore P \hat{A} Q=\frac{\pi}{3}$	A1	AG
	Alternative method for Question 12(a)		
	Using the internal angle of a regular hexagon $=\frac{2 \pi}{3}$ Or $F \hat{A} O+O \hat{A} B=\frac{2 \pi}{3}$, equilateral triangles	M1	
	$P \hat{A} Q=2 \pi-\left(\frac{\pi}{2}+\frac{2 \pi}{3}+\frac{\pi}{2}\right)=\frac{\pi}{3}$	A1	AG

Question	Answer	Marks	Guidance
12(a)	Alternative method for Question 12(a)		
	$\operatorname{Sin} \theta=\frac{20}{40}$, with θ clearly identified	M1	
	$\theta=\frac{\pi}{6}, 2 \theta=\frac{\pi}{3}=\hat{A} O \text { and by similar triangles }=P \hat{A} Q$	A1	AG
		2	
12(b)	Each straight section of rope has length 40 cm	B1	SOI
	Each curved section round each pipe has length $r \theta=20 \times \frac{\pi}{3}$	*M1	Use of $r \theta$ with $r=20$ and θ in radians
	Total length $=6 \times($ their 40$)+k \pi)$	DM1	$6 \times$ (their straight section + their curved section). Their curved section must be from acceptable use of $r \theta$ - this could now be numeric.
	$240+40 \pi$ or 366 (AWRT) (cm)	A1	Or directly: $(6 \times$ diameter $)+$ circumference
		4	

Question	Answer	Marks	Guidance
12(c)	$\begin{aligned} & \text { [Triangle area }=\text {] } \frac{1}{2} \times 40 \times 40 \times \sin \left(\frac{\pi}{3}\right) \text { or } \frac{1}{2} \times 40 \times 20 \sqrt{3} \text { or } \\ & 400 \sqrt{3} \text { or } 693(\text { AWRT }) \end{aligned}$	B1	
	[Total area of hexagon $=6 \times 400 \sqrt{3}=] 2400 \sqrt{3}$	B1	Condone $4800 \frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	[Trapezium area $=] \frac{1}{2} \times(40+80) \times 40 \sin \left(\frac{\pi}{3}\right)$ or $1200 \sqrt{3}$ or 2080 (AWRT)	B1	
	[Total area of hexagon $=2 \times 1200 \sqrt{3}=] 2400 \sqrt{3}$	B1	Condone $4800 \frac{\sqrt{ } 3}{2}$
	Alternative method for Question 12(c)		
	Area of triangle $A B C=400 \sqrt{3}$ or 693 (AWRT) or $4 \times$ Area of half of triangle $A B C=4 \times 200 \sqrt{3}$ or $1390($ AWRT $)$ or Area of rectangle $A B D E=1600 \sqrt{3}$ or 2770 (AWRT)	B1	
	$\begin{aligned} & {[\text { Total area of hexagon }=2 \times 400 \sqrt{3}+1600 \sqrt{3}=] 2400 \sqrt{3}} \\ & \text { Or }[=4 \times 200 \sqrt{3}+1600=] 2400 \sqrt{3} \end{aligned}$	B1	Condone $4800 \frac{\sqrt{ } 3}{2}$
			If B0B0, SC B1 can be scored for sight of 4160 (AWRT) as final answer.
		2	

Question	Answer	Marks	Guidance
$12(\mathrm{~d})$	Each rectangle area $=40 \times 20(=800)$	B1	SOI, e.g. by sight of 4800
	Each sector area $=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 20^{2} \times \frac{\pi}{3}\left[=\frac{200 \pi}{3}\right]$	B1	SOI.
	Total area $=2400 \sqrt{3}+4800+400 \pi$ or $10200\left(\mathrm{~cm}^{2}\right)(\mathrm{AWRT})$	B1	Or directly: part (c) $+6800+$ area circle radius 20.
		$\mathbf{3}$	

Cambridge International AS \& A Level

MATHEMATICS

9709/13
Paper 1 Pure Mathematics 1
May/June 2021
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$[\mathrm{f}(x)=] 2 x^{3}+\frac{8}{x}[+c]$	B1	Allow any correct form
	$7=16+4+c$	M1	Substitute $\mathrm{f}(2)=7$ into an integral. c must be present. Expect $c=-13$
	$\mathrm{f}(x)=2 x^{3}+\frac{8}{x}-13$	A1	Allow $y=, \mathrm{f}(x)$ or y can appear earlier in answer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$\left[\mathrm{f}^{-1}(x)=\right]\left((2 x-1)^{1 / 2}\right) \times\left(\frac{1}{3} \times 2 \times \frac{3}{2}\right)(-2)$	B2, 1, 0	Expect $(2 x-1)^{1 / 2}-2$
	$(2 x-1)^{1 / 2}-2 \leqslant 0 \rightarrow 2 x-1 \leqslant 4$ or $2 x-1<4$	M1	SOI. Rearranging and then squaring, must have power of $1 / 2$ not present Allow ' $=0$ 'at this stage but do not allow ' ≥ 0 ' or ' >0, If ' -2 ' missed then must see \leqslant or $<$ for the M1
	Value [of a] is $21 / 2$ or $a=21 / 2$	A1	WWW, OE e.g. $\frac{5}{2}, 2.5$ Do not allow from ' $=0$ ' unless some reference to negative gradient.
		4	

Question	Answer	Marks	Guidance
3	$x^{2}-4 x+3=m x-6$ leading to $x^{2}-x(4+m)+9$	*M1	Equating and gathering terms. May be implied on the next line.
	$b^{2}-4 a c$ leading to $(4+m)^{2}-4 \times 9$	DM1	SOI. Use of the discriminant with their a, b and c
	$4+m= \pm 6$ or $(m-2)(m+10)=0$ leading to $m=2$ or -10	A1	Must come from $b^{2}-4 a c=0$ SOI
	Substitute both their m values into their equation in line 1	DM1	
	$m=2$ leading to $x=3 ; m=-10$ leading to $x=-3$	A1	
	$(3,0),(-3,24)$	A1	Accept 'when $x=3, y=0$; when $x=-3, y=24$ ' If final A0A0 scored, SC B1 for one point correct WWW
	Alternative method for Question 3		
	$\frac{d y}{d x}=2 x-4 \rightarrow 2 x-4=m$	*M1	
	$x^{2}-4 x+3=(2 x-4) x-6$	DM1	
	$x^{2}-4 x+3=2 x^{2}-4 x-6 \rightarrow 9=x^{2} \rightarrow x= \pm 3$	A1	
	$y=0,24$ or $(3,0),(-3,24)$	A1	
	Substitute both their x values into their equation in line 1	DM1	Or substitute both their (x, y) into $y=m x-6$
	When $x=3, m=2$; when $x=-3, m=-10$	A1	If A0, DM1, A0 scored, SC B1 for one point correct WWW
		6	

Question	Answer	Marks	Guidance
4(a)	$\begin{aligned} & \frac{\tan x+\sin x}{\tan x-\sin x}[=k] \text { leading to } \frac{\sin x+\sin x \cos x}{\sin x-\sin x \cos x}[=k] \\ & \text { or } \frac{\frac{1}{\cos x}+1}{\frac{1}{\cos x}-1}[=\mathrm{k}] \text { or } \frac{\tan x+\tan \mathrm{x} \cos \mathrm{x}}{\tan \mathrm{x}-\tan \mathrm{x} \cos \mathrm{x}}[=\mathrm{k}] \end{aligned}$	M1	Multiply numerator and denominator by $\cos x$, or divide numerator and denominator by $\tan x$ or $\sin x$
	$\frac{\sin x(1+\cos x)}{\sin x(1-\cos x)}$ or $\frac{\frac{1}{\cos x}+1}{\frac{1}{\cos x}-1} \cdot \frac{\cos x}{\cos x}$ or $\frac{\tan x(1+\cos x)}{\tan x(1-\cos x)}$ leading to $\frac{1+\cos x}{1-\cos x}[=k]$	A1	AG, WWW
		2	
4(b)	$k-k \cos x=1+\cos x$ leading to $k-1=k \cos x+\cos x$	M1	Gather like terms on LHS and RHS
	$k-1=(k+1) \cos x$ leading to $\quad \cos x=\frac{k-1}{k+1}$	A1	WWW, OE
		2	
4(c)	Obtaining $\cos x$ from their (b) or (a)	M1	Expect $\cos x=\frac{3}{5}$
	± 0.927 (only solutions in the given range)	A1	AWRT. Accept $\pm 0.295 \pi$
		2	

Question	Answer	Marks	Guidance
5(a)	$1 / 2 \times 4^{2} \times$ angle $\mathrm{BAD}=10$	M1	Use of sector area formula
	Angle BAD $=1.25$	A1	OE. Accept $0.398 \pi, 71.6^{\circ}$ for SC B1 only
		2	
5(b)	Arc $B D=4 \times$ their 1.25	M1	Use of arc length formula. Expect 5.
	$B C=4 \tan ($ their 1.25$)$	M1	Expect $12.0(4)$. May use $A C B=0.321$ or 18.4°
	$C D=\frac{4}{\cos (\text { their } 1.25)}-4 \text { or } \sqrt{4^{2}+(\text { their } B C)^{2}}-4$	M1	Expect $12.69-4=8.69$. May use $A C B$.
	Perimeter $=5+12.0(4)+8.69=25.7(\mathrm{~cm})$	A1	AWRT
		4	

Question	Answer	Marks	Guidance
6(a)	$\mathrm{f}(x)=(x-1)^{2}+4$	B1	
	$g(x)=(x+2)^{2}+9$	B1	
	$g(x)=f(x+3)+5$	B1 B1	B1 for each correct element. Accept $p=3, q=5$
		4	

Question	Answer	Marks	Guidance
6(b)	Translation or Shift	B1	
	$\binom{-3}{5}$ or acceptable explanation	B1 FT	If given as 2 single translations both must be described correctly e.g. $\binom{-3}{0} \&\binom{0}{5}$ FT from their $\mathrm{f}(x+p)+q$ or their $\mathrm{f}(x) \rightarrow \mathrm{g}(x)$ Do not accept $\binom{1}{4}$ or $\binom{-2}{9}$
		2	

Question	Answer	Marks	Guidance
7(a)	$(a-x)^{6}=a^{6}-6 a^{5} x+15 a^{4} x^{2}-20 a^{3} x^{3}+\ldots$	B2, 1, 0	Allow extra terms. Terms may be listed. Allow $a^{6} x^{0}$.
		2	
7(b)	$\left(1+\frac{2}{a x}\right)\left(\ldots 15 a^{4} x^{2}-20 a^{3} x^{3}+\ldots\right)$ leading to $\left[x^{2}\right]\left(15 a^{4}-40 a^{2}\right)$	M1	Attempting to find 2 terms in x^{2}
	$15 a^{4}-40 a^{2}=-20$ leading to $15 a^{4}-40 a^{2}+20[=0]$	A1	Terms on one side of the equation
	$\left(5 a^{2}-10\right)\left(3 a^{2}-2\right)[=0]$	M1	OE. M1 for attempted factorisation or solving for a^{2} or $u\left(=\mathrm{a}^{2}\right)$ using e.g. formula or completing the square
	$a= \pm \sqrt{2}, \pm \sqrt{\frac{2}{3}}$	B1 B1	OE exact form only If B0B0 scored then SC B1 for $\sqrt{2}, \sqrt{\frac{2}{3}}$ WWW or $\pm 1.41, \pm 0,816$ WWW
		5	

Question	Answer	Marks	Guidance
8(a)	$[\operatorname{fg}(x)=] 1 /(2 x+1)^{2}-1$	B1	SOI
	$1 /(2 x+1)^{2}-1=3$ leading to $4(2 x+1)^{2}=1$ or $\frac{1}{(2 x+1)}=[\pm] 2$ or $16 x^{2}+16 x+3=0$	M1	Setting $\operatorname{fg}(x)=3$ and reaching a stage before $2 x+1= \pm 1 / 2$ or reaching a 3 term quadratic in x
	$2 x+1= \pm 1 / 2 \quad$ or $2 x+1=-1 / 2$ or $(4 x+1)(4 x+3)[=0]$	A1	Or formula or completing square on quadratic
	$x=-\frac{3}{4} \text { only }$	A1	
	Alternative method for Question 8(a)		
	$x^{2}-1=3$	M1	
	$\mathrm{g}(\mathrm{x})=-2$	A1	
	$\frac{1}{(2 x+1)}=-2$	M1	
	$x=-\frac{3}{4} \text { only }$	A1	
		4	

Question	Answer	Marks	Guidance
$8(\mathrm{~b})$	$y=\frac{1}{(2 x+1)^{2}}-1$ leading to $(2 x+1)^{2}=\frac{1}{y+1}$ leading to $2 x+1=[\pm] \frac{1}{\sqrt{y+1}}$	$* \mathbf{M 1}$	Obtain $2 x+1$ or $2 y+1$ as the subject
	$x=[\pm] \frac{1}{2 \sqrt{y+1}}-\frac{1}{2}$	DM1	Make $x($ or $y)$ the subject
	$-\frac{1}{2 \sqrt{x+1}}-\frac{1}{2}$	A1	OE e.g. $-\frac{\sqrt{x+1}}{2 x+2}-\frac{1}{2},-\left(\sqrt{\frac{-x}{4 x+4}+\frac{1}{4}}+\frac{1}{2}\right)$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$9(\mathrm{a})$	$a r=\frac{24}{100} \times \frac{a}{1-r}$	M1	Form an equation using a numerical form of the percentage and correct formula for u_{2} and S_{∞}
	$100 r^{2}-100 r+24[=0]$	A1	OE. All 3 terms on one side of an equation.
	$(20 r-8)(5 r-3)[=0] \rightarrow r=\frac{2}{5}, \frac{3}{5}$	A1	Dependent on factors or formula seen from their quadratic.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
9(b)	$3 \times\{(a+4 d)\}=\{(2(a+1)+11(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one $\}$ correct
	Simplifies to $a+d=13$	A1	
	$\left[\frac{5}{2}\right] \times 3\{(2 a+4 d)\}=\left[\frac{5}{2}\right] \times 2\{(4(a+1)+4(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one $\}$ correct
	Simplifies to $-a+2 d=8$	A1	
	Solve 2 linear equations simultaneously	DM1	Elimination or substitution expected
	$d=7, a=6$	A1	SC B1 for $a=6, d=7$ without complete working
		6	

Question	Answer	Marks	Guidance
10(a)	Gradient of $A B=-\frac{3}{5}$, gradient of $B C=\frac{5}{3}$ or lengths of all 3 sides or vectors	M1	Attempting to find required gradients, sides or vectors
	$m_{a b} m_{b c}=-1$ or Pythagoras or $\overrightarrow{A B} \cdot \overrightarrow{B C}=0$ or $\cos A B C=0$ from cosine rule	A1	WWW
		2	
10(b)	Centre $=$ mid-point of $A C=(2,4)$	B1	
		1	

Question	Answer	Marks	Guidance
10(c)	$\left(x-\text { their } \mathrm{x}_{\mathrm{c}}\right)^{2}+\left(y \text {-their } y_{c}\right)^{2}\left[=r^{2}\right]$ or $\left(\text { their } x_{\mathrm{c}}-x\right)^{2}+\left(\text { their } y_{c}-y\right)^{2}=\left[r^{2}\right]$	M1	Use of circle equation with their centre
	$(x-2)^{2}+(y-4)^{2}=17$	A1	Accept $x^{2}-4 x+y^{2}-8 y+3=0$ OE
		2	
10(d)	$\left(\frac{x+3}{2}, \frac{y+0}{2}\right)=(2,4) \text { or } \mathbf{B E}=2 \mathbf{B D}=2\binom{-1}{4}$ Or Equation of $B E$ is $y=-4(x-3)$ or $y-4=-4(x-2)$ leading to $y=-4 x+12$ Substitute equation of $B E$ into circle and form a 3 -term quadratic.	M1	Use of mid-point formula, vectors, steps on a diagram May be seen to find x coordinate at E
	$(x, y)=(1,8)$ or $\mathbf{O E}=\binom{3}{0}+\binom{-2}{8}=\binom{1}{8}$	A1	$E=(1,8)$ Accept without working for both marks SC B2
	Gradient of $B D, m,=-4$ or gradient $A C=\frac{1}{4}=$ gradient of tangent	B1	Or gradient of $B E=-4$
	Equation of tangent is $y-8=1 / 4(x-1) \mathrm{OE}$	M1 A1	For M1, equation through their E or $(1,8)$ (not, A, B or C) and with gradient $\frac{-1}{\text { their }-4}$
		5	

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-1 / 2}-\frac{1}{2} k^{2} x^{-3 / 2}$	B1 B1	Allow any correct unsimplified form
	$\frac{1}{2} x^{-1 / 2}-\frac{1}{2} k^{2} x^{-3 / 2}=0 \quad$ leading to $\frac{1}{2} x^{-1 / 2}=\frac{1}{2} k^{2} x^{-3 / 2}$	M1	OE. Set to zero and one correct algebraic step towards the solutions. $\frac{\mathrm{d} y}{\mathrm{~d} x} \text { must only have } 2 \text { terms. }$
	$\left(k^{2}, 2 k\right)$	A1	
		4	
11(b)	When $x=4 k^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left[\frac{1}{4 k}-\frac{1}{16 k}=\right] \frac{3}{16 k}$	B1	OE
	$y=\left[2 k+k^{2} \times \frac{1}{2 k}\right]=\frac{5 k}{2}$	B1	OE. Accept $2 k+\frac{k}{2}$
	Equation of tangent is $y-\frac{5 k}{2}=\frac{3}{16 k}\left(x-4 k^{2}\right)$ or $y=m x+c \rightarrow \frac{5 k}{2}=\frac{3}{16 k}\left(4 k^{2}\right)+c$	M1	Use of line equation with their gradient and ($4 k^{2}$, their y),
	When $x=0, y=\left[\frac{5 k}{2}-\frac{3 k}{4}=\right] \frac{7 k}{4}$ or from $y=m x+c, c=\frac{7 k}{4}$	A1	OE
		4	

Question	Answer	Marks	Guidance
11(c)	$\int\left(x^{\frac{1}{2}}+k^{2} x^{-\frac{1}{2}}\right) \mathrm{d} x=\frac{2 x^{\frac{3}{2}}}{3}+2 k^{2} x^{\frac{1}{2}}$	B1	Any unsimplified form
	$\left(\frac{16 k^{3}}{3}+4 k^{3}\right)-\left(\frac{9 k^{3}}{4}+3 k^{3}\right)$	M1	Apply limits $\frac{9}{4} k^{2} \rightarrow 4 k^{2}$ to an integration of y. M0 if volume attempted.
	$\frac{49 k^{3}}{12}$	A1	OE. Accept $4.08 k^{3}$
		3	

Cambridge International AS \& A Level

MATHEMATICS

9709/11
Paper 1 Pure Mathematics 1
October/November 2020
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations	
AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only
ISW	Ignore Subsequent Working
SOI	Seen Or Implied SC
	Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
AWWT	Without Wrong Working

Question	Answer	Marks	Guidance
1	$2 x^{2}+5=m x-3 \rightarrow 2 x^{2}-m x+8(=0)$	B1	Form 3-term quadratic
	$m^{2}-64$	$\mathbf{M 1}$	Find $b^{2}-4 a c$.
	$-8<m<8$	$\mathbf{A 1}$	Accept $(-8,8)$ and equality included
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$(y=)\left[-(x-3)^{-1}\right]\left[+\frac{1}{2} x^{2}\right](+c)$	B1 B1	
	$7=1+2+c$	$\mathbf{M 1}$	Substitute $x=2, y=7$ into an integrated expansion $(c$ present $)$. Expect $c=4$
	$y=-(x-3)^{-1}+\frac{1}{2} x^{2}+4$	$\mathbf{A 1}$	OE
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	(Derivative $=) 4 \pi r^{2}(\rightarrow 400 \pi)$	B1	SOI Award this mark for $\frac{\mathrm{d} r}{\mathrm{~d} V}$
	$\frac{50}{\text { their derivative }}$	M1	Can be in terms of r
	$\frac{1}{8 \pi}$ or 0.0398	A1	AWRT
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4	$(y=)[3]+[2]\left[\cos \frac{1}{2} \theta\right]$	B1 B1 B1	
		3	

Question	Answer	Marks	Guidance
5(a)	$6 C 2 \times\left[2\left(x^{2}\right)\right]^{4} \times\left[\frac{a}{(x)}\right]^{2}, 6 C 3 \times\left[2\left(x^{2}\right)\right]^{3} \times\left[\frac{a}{(x)}\right]^{3}$	B1 B1	SOI Can be seen in an expansion
	$15 \times 2^{4} \times a^{2}=20 \times 2^{3} \times a^{3}$	M1	SOI Terms must be from a correct series
	$a=\frac{15 \times 2^{4}}{20 \times 2^{3}}=\frac{3}{2}$	A1	OE
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{~b})$	0	$\mathbf{B 1}$	
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
6	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=\left[\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}\right] \times[-2 x]$	B1 B1	
	$\frac{-x}{\left(25-x^{2}\right)^{1 / 2}}=\frac{4}{3} \rightarrow \frac{x^{2}}{25-x^{2}}=\frac{16}{9}$	M1	Set $=\frac{4}{3}$ and square both sides
	$16\left(25-x^{2}\right)=9 x^{2} \rightarrow 25 x^{2}=400 \rightarrow x=(\pm) 4$	A1	
	When $x=-4, y=5 \rightarrow(-4,5)$	$\mathbf{A 1}$	$\mathbf{5}$

Question	Answer	Marks	Guidance
7(a)	$\left(\frac{\sin \theta}{1-\sin \theta}-\frac{\sin \theta}{1+\sin \theta}=\right) \frac{\sin \theta(1+\sin \theta)-\sin \theta(1-\sin \theta)}{1-\sin ^{2} \theta}$	*M1	Put over a single common denominator
	$\frac{2 \sin ^{2} \theta}{\cos ^{2} \theta}$	DM1	Replace $1-\sin ^{2} \theta$ by $\cos ^{2} \theta$ and simplify numerator
	$2 \tan ^{2} \theta$	A1	AG
		3	
7(b)	$2 \tan ^{2} \theta=8 \rightarrow \tan \theta=(\pm) 2$	B1	SOI
	$(\theta=) 63.4^{\circ}, 116.6^{\circ}$	$\begin{array}{r} \text { B1 } \\ \text { B1 FT } \end{array}$	FT on $180-1$ st solution (with justification)
		3	

Question	Answer	Marks	Guidance
$8(\mathrm{a})$	$S=\frac{a}{1-r}, \quad 2 S=\frac{a}{1-R}$	B1	SOI at least one correct
	$\frac{2 a}{1-r}=\frac{a}{1-R}$	M1	SOI
	$2-2 R=1-r \rightarrow r=2 R-1$	$\mathbf{A 1}$	AG
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
8(b)	$a r^{2}=a R \rightarrow(a)(2 R-1)^{2}=R(a)$	*M1	
	$4 R^{2}-5 R+1(=0) \rightarrow(4 R-1)(R-1)(=0)$	DM1	Allow use of formula or completing square.
	$R=\frac{1}{4}$	A1	Allow $R=1$ in addition
	$S=\frac{2 a}{3}$	A1	
	Alternative method for question 8(b)		
	$a r^{2}=a R \rightarrow(a) r^{2}=1 / 2(r+1)(a)$	*M1	Eliminating 1 variable
	$2 r^{2}-r-1(=0) \rightarrow(2 r+1)(r-1)(=0)$	DM1	Allow use of formula or completing square. Must solve a quadratic.
	$r=-\frac{1}{2}$	A1	Allow $r=1$ in addition
	$S=\frac{2 a}{3}$	A1	
		4	

Question	Answer	Marks	Guidance
9(a)	$m_{A B}=\frac{4-2}{-1-3}=-\frac{1}{2}$	B1	
	Equation of tangent is $y-2=2(x-3)$	B1 FT	$(3,2)$ with their gradient $-\frac{1}{m_{A B}}$
		2	
9(b)	$A B^{2}=4^{2}+2^{2}=20$ or $r^{2}=20$ or $r=\sqrt{20}$ or $A B=\sqrt{20}$	B1	
	Equation of circle centre B is $(x-3)^{2}+(y-2)^{2}=20$	M1 A1	FT their 20 for M1
		3	
9(c)	$(x-3)^{2}+(2 x-6)^{2}=$ their 20	M1	Substitute their $y-2=2 x-6$ into their circle, centre B
	$5 x^{2}-30 x+25=0$ or $5(x-3)^{2}=20$	A1	
	$[(5)(x-5)(x-1) \quad$ or $\quad x-3= \pm 2] \quad x=5,1$	A1	
		3	

Question	Answer	Marks	Guidance
10(a)	$\left(\sin \theta=\frac{r}{O C} \rightarrow\right) O C=\frac{r}{\sin \theta}$	M1 A1	
	$C D=r+\frac{r}{\sin \theta}$	A1	
		3	
10(b)	Radius of $\operatorname{arc} A B=4+\frac{4}{\sin \frac{\pi}{6}}=4+8=12$	B1	SOI
	$(\operatorname{Arc} A B=)$ their $12 \times \frac{2 \pi}{6}$ or $\left(\frac{1}{2} A B=\right)\left(\right.$ their $\left.12 \times \frac{\pi}{6}\right)$	M1	Expect 4π, must use their CD , not 4
	Perimeter $=24+4 \pi$	A1	
		3	

Question	Answer	Marks	Guidance
10(c)	Area $F O C=\frac{1}{2} \times 4 \times$ their $O C \times \sin \frac{\pi}{3}$	M1	
	$8 \sqrt{3}$	A1	
	Area sector $F O E=\frac{1}{2} \times \frac{2 \pi}{3} \times 4^{2}=\frac{16 \pi}{3}$	B1	
	$\text { Shaded area }=16 \sqrt{3}-\frac{16 \pi}{3}$	A1	
	Alternative method for question 10(c)		
	$F C=\sqrt{(\text { their } O C)^{2}-4^{2}}$	M1	$\sqrt{48}$ or $4 \sqrt{3}$
	Area $F O C=\frac{1}{2} \times 4 \times 4 \sqrt{3}=8 \sqrt{3}$	A1	
	Area of half sector $F O E=\frac{1}{2} \times \frac{\pi}{3} \times 4^{2}=\frac{8 \pi}{3}$	B1	
	$\text { Shaded area }=16 \sqrt{3}-\frac{16 \pi}{3}$	A1	
		4	

Question	Answer	Marks	Guidance
11(a)	$\mathrm{fg}(x)=(2 x+1)^{2}+3$	B1	OE
		1	
11(b)	$y=(2 x+1)^{2}+3 \rightarrow 2 x+1=(\pm) \sqrt{y-3}$	M1	1st two operations. Allow one sign error or x / y interchanged
	$x=(\pm) \frac{1}{2}(\sqrt{y-3}-1)$	M1	OE 2nd two operations. Allow one sign error or x / y interchanged
	$\left(\mathrm{fg}^{-1}(x)=\right) \frac{1}{2}(\sqrt{x-3}-1)$ for $(x)>3$	A1 B1	Allow (3, ∞)
		4	
11(c)	$\operatorname{gf}(x)=2\left(x^{2}+3\right)+1$	B1	SOI
	$(2 x+1)^{2}+3-3=2\left(x^{2}+3\right)+1 \rightarrow 2 x^{2}+4 x-6(=0)$	*M1	Express as 3-term quadratic
	$(2)(x+3)(x-1)(=0)$	DM1	Or quadratic formula or completing the square
	$x=1$	A1	
		4	

Question	Answer	Marks	Guidance
12(a)	$4 x^{\frac{1}{2}}-2 x=3-x \rightarrow x-4 x^{\frac{1}{2}}+3(=0)$	*M1	3-term quadratic. Can be expressed as e.g. $u^{2}-4 u+3 \quad(=0)$
	$\left(x^{\frac{1}{2}}-1\right)\left(x^{\frac{1}{2}}-3\right)(=0)$ or $(u-1)(u-3)(=0)$	DM1	Or quadratic formula or completing square
	$x^{\frac{1}{2}}=1,3$	A1	SOI
	$x=1,9$	A1	
	Alternative method for question 12(a)		
	$\left(4 x^{\frac{1}{2}}\right)^{2}=(3+x)^{2}$	*M1	Isolate $x^{\frac{1}{2}}$
	$16 x=9+6 x+x^{2} \rightarrow x^{2}-10 x+9(=0)$	A1	3-term quadratic
	$(x-1)(x-9)(=0)$	DM1	Or formula or completing square on a quadratic obtained by a correct method
	$x=1,9$	A1	
		4	
12(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{1 / 2}-2$	*B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $2 x^{1 / 2}-2=0$ when $x=1$ hence B is a stationary point	DB1	
		2	

Question	Answer	Marks	Guidance
12(c)	$\text { Area of correct triangle }=\frac{1}{2}(9-3) \times 6$	M1	or $\int_{3}^{9}(3-x)(\mathrm{d} x)=\left[3 x-\frac{1}{2} x^{2}\right] \rightarrow-18$
	$\int\left(4 x^{\frac{1}{2}}-2 x\right)(\mathrm{d} x)=\left[\frac{4 x^{\frac{3}{2}}}{\frac{3}{2}}-x^{2}\right]$	B1 B1	
	$(72-81)-\left(\frac{64}{3}-16\right)$	M1	Apply limits $4 \rightarrow$ their 9 to an integrated expression
	$-14 \frac{1}{3}$	A1	OE
	Shaded region $=18-14 \frac{1}{3}=3 \frac{2}{3}$	A1	OE
		6	

Cambridge International AS \& A Level

MATHEMATICS

9709/12
Paper 1 Pure Mathematics 1
October/November 2020
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations	
AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only ISW
Ignore Subsequent Working	
SOI	Seen Or Implied
SC	Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of circumstance)
AWRT	Without Wrong Working

Question	Answer	Marks	Guidance
1	Coefficient of x^{3} in $(1-2 x)^{5}$ is -80	B1	Can be seen in an expansion but must be simplified correctly.
	Coefficient of x^{2} in $(1-2 x)^{5}$ is 40	B1	
	Coefficient of x^{3} in $(1+k x)(1-2 x)^{5}$ is $40 k-80=20$	M1	Uses the relevant two terms to form an equation $=20$ and solves to find k. Condone x^{3} appearing in some terms if recovered.
	$(k=) \frac{5}{2}$	A1	
		4	

Question	Answer	Marks	Guidance
2	$(-2 p)^{2}=(2 p+6) \times(p+2) \text { or } \frac{-2 p}{2 p+6}=\frac{p+2}{-2 p}$	M1	OE. Using " a, b, c then $b^{2}=a c$ " or $a=2 p+6, a r=-2 p$ and $a r^{2}=p+2$ to form a correct relationship in terms of p only
	$\left(2 p^{2}-10 p-12=0\right) p=6$	A1	
	$a=18$ and $r=-2 / 3$	A1	
	$\begin{aligned} & \left(\mathrm{s}_{\infty}\right)=\text { their } a \div(1-\text { their } r) \\ & \left(=18 \div \frac{5}{3}\right) \end{aligned}$	M1	Correct formula used with their values for a and $r,\|r\|<1$ Both $a \& r$ from the same value of p .
	$\left(s_{\infty}=\right) 10.8$	A1	OE. A0 if an extra solution given
			SC B2 for $s_{\infty}=\frac{2 p+6}{1-\frac{-2 p}{2 p+6}}$ or $\frac{2 p+6}{1-\frac{p+2}{-2 p}}$ ignore any subsequent algebraic simplification.
		5	

Question	Answer	Marks	Guidance
3	$2 x^{2}+m(2 x+1)-6 x-4(=0)$	*M1	y eliminated and all terms on one side with correct algebraic steps. Condone \pm errors
	Using $b^{2}-4 a c$ on $2 x^{2}+x(2 m-6)+m-4 \quad(=0)$	DM1	Any use of discriminant with their a, b and c identified correctly.
	$4 m^{2}-32 m+68$ or $2 m^{2}-16 m+34$ or $m^{2}-8 m+17$	A1	
	$(2 m-8)^{2}+k$ or $(m-4)^{2}+k$ or minimum point $(4, k)$ or finds $b^{2}-4 a c \quad(=-4,-16,-64)$	DM1	OE. Any valid method attempted on their 3-term quadratic
	$(m-4)^{2}+1$ oe + always $>0 \rightarrow 2$ solutions for all values of m or Minimum point $(4,1)+(\mathrm{fn})$ always $>0 \rightarrow 2$ solutions for all values of m or $b^{2}-4 a c<0+$ no solutions $\rightarrow 2$ solutions for the original equation for all values of m	A1	Clear and correct reasoning and conclusion without wrong working.
		5	

Question	Answer	Marks	Guidance
4	S_{x} and S_{x+1}	M1	Using two values of n in the given formula
	$a=5, d=2$	A1 A1	
	$a+(n-1) d>200 \rightarrow 5+2(k-1)>200$	M1	Correct formula used with their a and d to form an equation or inequality with 200 , condone use of n
	($k=$) 99	A1	Condone $\geqslant 99$
	Alternative method for question 4		
	$\frac{n}{2}(2 a+(n-1) d) \equiv n^{2}+4 n \rightarrow\left(\frac{d}{2}=1, a-\frac{1}{2} d=4\right)$	M1	Equating two correct expressions of S_{n} and equating coefficients of n and n^{2}
	$d=2, a=5$	A1 A1	
	$a+(n-1) d>200 \rightarrow 5+2(k-1)>200$	M1	Correct formula used with their a and d to form an equation or inequality with 200 , condone use of n
	($k=$) 99	A1	Condone $\geqslant 99$
	Alternative method for question 4		
	$\operatorname{sum}_{k}-\operatorname{sum}_{k-1} \rightarrow k^{2}+4 k-(k-1)^{2}-4(k-1)$	M1 A1	Using given formula with consecutive expressions subtracted. Allow $k+1$ and k.
	$2 k+3>200$ or $=200$	M1 A1	Simplifying to a linear equation or inequality
	($k=$) 99	A1	Condone $\geqslant 99$
		5	

Question	Answer	Marks	Guidance
5(a)	0	B1	
		1	
5(b)	$\left(\mathrm{f}^{-1}(x)\right)=\frac{x+2}{4},\left(\mathrm{~g}^{-1}(x)\right)=\frac{4-x}{x} \text { or } \frac{4}{x}-1$	B1 B1	OE. Sight of correct inverses.
	$x^{2}+6 x-16(=0)$	B1	Equating inverses and simplifying.
	$(x+8) \operatorname{and}(x-2)$	M1	Correct attempt at solution of their 3-term quadraticfactorising, completing the square or use of formula.
	$(x=) 2$ or -8	A1	Do not accept answers obtained with no method shown.
		5	

Question	Answer	Marks	Guidance
6(a)	$\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right)\left(\frac{1}{\sin x}+1\right)$	B1	Uses " $\tan x=\sin x \div \cos x$ " throughout
	$\left(\frac{1-\sin x}{\cos x}\right)\left(\frac{1+\sin x}{\sin x}\right)$ or $\left(\frac{1-\sin ^{2} x}{\cos x \sin x}\right)$	M1	Correct algebra leading to two or four terms
	$\left(\frac{\cos ^{2} x}{\cos x \sin x}\right)$	A1	OE. A correct expression which can be cancelled directly to $\frac{\cos x}{\sin x}$ e.g. $\frac{\cos x\left(1-\sin ^{2} x\right)}{\sin x\left(1-\sin ^{2} x\right)}$
	$\left(\frac{\cos ^{2} x}{\cos x \sin x}\right)=\left(\frac{\cos x}{\sin x}\right)=\frac{1}{\tan x}$	A1	AG. Must show cancelling. If x is missing throughout their working withhold this mark.
		4	
6(b)	Uses (a) $\rightarrow \frac{1}{\tan x}=2 \tan ^{2} x \tan ^{3} x=\frac{1}{2}$	M1	Reducing to $\tan ^{3} x=k$.
	$(x=) 38.4^{\circ}$	A1	AWRT. Ignore extra answers outside the range 0 to 180° but A0 if within.
		2	

Question	Answer	Marks	Guidance
7(a)	$\mathrm{f}^{\prime}(4)\left(=\frac{5}{2}\right)$	*M1	Substituting 4 into $\mathrm{f}^{\prime}(x)$
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}\right) \rightarrow\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)=\frac{5}{2} \times 0.12$	DM1	Multiplies their $\mathrm{f}^{\prime}(4)$ by 0.12
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} t}=\right) 0.3$	A1	OE
		3	
7(b)	$\frac{6 x^{\frac{1}{2}}}{\frac{1}{2}}-\frac{4 x^{-\frac{1}{2}}}{-\frac{1}{2}}(+c)$	B1 B1	B1 for each unsimplified integral.
	Uses (4,7$)$ leading to $c=(-21)$	M1	Uses $(4,7)$ to find a c value
	$y \text { or } \mathrm{f}(x)=12 x^{\frac{1}{2}}+8 x^{-\frac{1}{2}}-21 \text { or } 12 \sqrt{x}+\frac{8}{\sqrt{x}}-21$	A1	Need to see y or $\mathrm{f}(x)=$ somewhere in their solution and 12 and 8
		4	

Question	Answer	Marks	Guidance
8(a)	Use of correct formula for the area of triangle $A B C$	M1	Use of $180-2 \theta$ scores M 0 . Condone $2 \pi-2 \theta$
	$\begin{aligned} & \frac{1}{2} r^{2} \sin (\pi-2 \theta) \text { or } \frac{1}{2} r^{2} \sin 2 \theta \text { or } 2 \times \frac{1}{2} r \times r \cos \theta \times \sin \theta \text { or } \\ & 2 \times \frac{1}{2} r \cos \theta \times r \sin \theta \end{aligned}$	A1	OE
	[Shaded area $=$ triangle - sector $]=$ their triangle area $-\frac{1}{2} r^{2} \theta$	B1 FT	FT for their triangle area $-\frac{1}{2} r^{2} \theta$ (Condone use of 180 degrees for triangle area for B 1)
		3	
8(b)	Arc $B D=r \theta=6 \mathrm{~cm}$	B1	SOI
	$\begin{aligned} & A C=2 r \cos \theta=(2 \times 10 \cos 0.6=20 \cos 0.6=16.506) \\ & \text { or } \sqrt{\left(2 r^{2}-2 r^{2} \cos (\pi-2 \theta)\right)} \text { or } \frac{r \times \sin (\pi-2 \theta)}{\sin \theta} \end{aligned}$	*M1	Finding $A C$ or $\frac{1}{2} A C(=8.25)$
	$D C=2 r \cos \theta-r \text { or } \sqrt{\left(2 r^{2}-2 r^{2} \cos (\pi-2 \theta)\right)}-r(=6.506)$	DM1	Subtracting r from their $A \mathrm{C}$ or $r-r \cos \theta$ from their half $A C$ (8.25-1.75)
	$($ Perimeter $=10+6+6.506=) 22.5$	A1	AWRT
		4	

Question	Answer	Marks	Guidance
9(a)	$r=\sqrt{\left(6^{2}+3^{2}\right)}$ or $r^{2}=45$	B1	Sight of $\mathrm{r}=6.7$ implies B1
	$(x-5)^{2}+(y-1)^{2}=r^{2}$ or $x^{2}-10 x+y^{2}-2 y=r^{2}-26$	M1	Using centre given and their radius or r in correct formula
	$(x-5)^{2}+(y-1)^{2}=45$ or $x^{2}-10 x+y^{2}-2 y=19$	A1	Do not allow $(\sqrt{45})^{2}$ for r^{2}
		3	
9(b)	C has coordinates (11, 4)	B1	
	0.5	B1	OE, Gradient of $A B, B C$ or $A C$.
	Grad of $\mathrm{CD}=-2$	M1	Calculation of gradient needs to be shown for this M1.
	$\left(\frac{1}{2} \times-2=-1\right)$ then states + perpendicular \rightarrow hence shown or tangent	A1	Clear reasoning needed.
	Alternative method for question 9(b)		
	C has coordinates (11,4)	B1	
	0.5	B1	OE, Gradient of $A B, B C$ or $A C$.
	Gradient of the perpendicular is -2 \rightarrow Equation of the perpendicular is $y-4=-2(x-11)$	M1	Use of $m_{1} m_{2}=-1$ with their gradient of $A B, B C$ or $A C$ and correct method for the equation of the perpendicular. Could use $D(5,16)$ instead of $C(11,4)$.
	Checks $D(5,16)$ or checks gradient of $C D$ and then states D lies on the line or $C D$ has gradient $-2 \rightarrow$ hence shown or tangent	A1	Clear check and reasoning needed. Checks that the other point lies on the line or checks gradient.

Question	Answer	Marks	Guidance
9(b)	Alternative method for question 9(b)		
	C has coordinates (11,4) or Gradient of $A B, B C$ or $A C=0.5$	B1	Only one of $A B, B C$ or $A C$ needed.
	Equation of the perpendicular is $y-4=-2(x-11)$	B1	Finding equation of $C D$.
	$(x-5)^{2}+(-2 x+26-1)^{2}=45 \rightarrow\left(x^{2}-22 x+121=0\right)$	M1	Solving simultaneously with the equation of the circle.
	$(x-11)^{2}=0$ or $b^{2}-4 a c=0 \rightarrow$ repeated root \rightarrow hence shown or tangent	A1	Must state repeated root.
	Alternative method for question 9(b)		
	C has coordinates (11, 4)	B1	
	Finding $C D=\sqrt{180}$ and $B D=\sqrt{225}$	B1	OE. Calculated from the co-ordinates of $B, C \& D$ without using r.
	Checking (their BD) ${ }^{2}$ - (their CD$)^{2}$ is the same as (their r $)^{2}$	M1	
	\therefore Pythagoras valid \therefore perpendicular \rightarrow hence shown or tangent	A1	Triangle $A C D$ could be used instead.
	Alternative method for question 9(b)		
	C has coordinates (11, 4)	B1	
	Finding vectors $\overrightarrow{A C}$ and $\overrightarrow{C D}$ or $\overrightarrow{B C}$ and $\overrightarrow{C D}$ $\left(=\binom{6}{3}\right.$ and $\binom{-6}{12}$ or $\binom{12}{6}$ and $\binom{-6}{12}$)	B1	Must be correct pairing.
	Applying the scalar product to one of these pairs of vectors	M1	Accept their $\overrightarrow{A C}$ and $\overrightarrow{C D}$ or their $\overrightarrow{B C}$ and $\overrightarrow{C D}$
	Scalar product $=0$ then states \therefore perpendicular \rightarrow hence shown or tangent	A1	
		4	

Question	Answer	Marks	Guidance
$9(\mathrm{c})$	$E(-1,4)$	B1 B1	WWW B1 for each coordinate Note: Equation of DE which is $y=2 x+6$ may be used to find E
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
10(a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=[8] \times\left[(3-2 x)^{-3}\right]+[-1] \quad\left(=\frac{8}{(3-2 x)^{3}}-1\right)$	B2, 1, 0	B2 for all three elements correct, B1 for two elements correct, B0 for only one or no elements correct.
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-3 \times 8 \times(3-2 x)^{-4} \times(-2) \quad\left(=\frac{48}{(3-2 x)^{4}}\right)$	B1 FT	FT providing their bracket is to a negative power
	$\int y \mathrm{~d} x=\left[(3-2 x)^{-1}\right][2 \div(-1 \times-2)]\left[-1 / 2 x^{2}\right](+\mathrm{c}) \quad\left(=\frac{1}{3-2 x}-\frac{1}{2} x^{2}+c\right)$	B1 B1 B1	Simplification not needed, B1 for each correct element
		6	

Question	Answer	Marks	Guidance
10(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow(3-2 x)^{3}=8 \rightarrow 3-2 x=\mathrm{k} \rightarrow x=$	M1	Setting their 2-term differential to 0 and attempts to solve as far as $x=$
	$\frac{1}{2}$	A1	
	Alternative method for question 10(b)		
	$y=0 \rightarrow \frac{2}{(3-2 x)^{2}}-x=0 \rightarrow(x-2)(2 x-1)^{2}=0 \rightarrow x=$	M1	Setting y to 0 and attempts to solve a cubic as far as $x=$ (3 factors needed)
	$\frac{1}{2}$	A1	
		2	
10(c)	Area under curve $=$ their $\left[\frac{1}{3-2 \times\left(\frac{1}{2}\right)^{\prime}}-\frac{\left(\frac{1}{2}\right)^{2}}{2}\right]-\left[\frac{1}{3-2 \times 0}-0\right]$	M1	Using their integral, their positive x limit from part (b) and 0 correctly.
	$\frac{1}{24}$	A1	
		2	

Question	Answer	Marks	Guidance
11(a)	5, -1	B1 B1	Sight of each value
		2	
11(b)		*B1	Needs to be a curve, not straight lines. One complete cycle starting and finishing at their largest value.
		DB1	One complete cycle starting and finishing at $y=5$ and going down to $y=-1$ and starting to level off at least one end.
		2	
11(c)(i)	0 solution	B1	
		1	
11(c)(ii)	2 solutions	B1	
		1	
11(c)(iii)	1 solution	B1	
		1	

Question	Answer	Marks	Guidance
11(d)	Stretch by (scale factor) $\frac{1}{2}$, parallel to x-axis or in x direction (or horizontally)	B1	
	Translation of $\binom{0}{4}$	B1	Accept translation/shift Accept translation 4 units in positive y-direction.
		2	
11(e)	Translation of $\binom{-\frac{\pi}{2}}{0}$	B1	Accept translation/shift Accept translation $-\frac{\pi}{2}$ units in x-direction.
	Stretch by (scale factor) 2 parallel to y-axis (or vertically).	B1	
		2	

Cambridge International AS \& A Level

MATHEMATICS

9709/13
Paper 1 Pure Mathematics 1
October/November 2020
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations	
AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only ISW
Ignore Subsequent Working	
SOI	Seen Or Implied
SC	Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of circumstance)
AWRT	Without Wrong Working

Question	Answer	Marks	Guidance
1(a)	$\left[(x+3)^{2}\right][-4]$	B1 B1	
		2	
1(b)	[Translation or shift] $\binom{-3}{-4}$	$\begin{array}{r} \text { B1 } \\ \text { B1 } \mathbf{F T} \end{array}$	Accept [translation/shift] $\binom{-$ their $a}{$ their $b}$ OR translation -3 units in x-direction and (translation) -4 units in y-direction.
		2	

Question	Answer	Marks	Guidance
2(a)	$\frac{-2}{x+2}$	B1	Integrate $\mathrm{f}(x)$. Accept $-2(x+2)^{-1}$. Can be unsimplified.
	$0-\left(-\frac{2}{3}\right)=\frac{2}{3}$	M1 A1	Apply limit(s) to an integrated expansion. CAO for A1
		3	
2(b)	$-1=-2+c$	M1	Substitute $x=-1, y=-1$ into their integrated expression (c present)
	$y=\frac{-2}{x+2}+1$	A1	Accept $y=-2(x+2)^{-1}+1 .-2$ must be resolved.
		2	

Question	Answer	Marks	Guidance
3	$3 \tan ^{4} \theta+\tan ^{2} \theta-2(=0)$	M1	SOI 3-term quartic, condone sign errors for this mark only
	$\left(3 \tan ^{2} \theta-2\right)\left(\tan ^{2} \theta+1\right)(=0)$	M1	Attempt to factorise or solve 3-term quadratic in $\tan ^{2} \theta$.
	$\tan \theta=(\pm) \sqrt{\frac{2}{3}} \text { or }(\pm) 0.816 \text { or }(\pm) 0.817$	A1	SOI Implied by final answer $=39.2^{\circ}$ after 1 st M1 scored
	$39.2^{\circ}, 140.8^{\circ}$	$\begin{array}{r} \text { A1 } \\ \text { A1 FT } \end{array}$	FT for 2nd solution $=180^{\circ}-1$ st solution
		5	

Question	Answer	Marks	Guidance
4	$3 x^{2}-4 x+4=m x+m-1 \rightarrow 3 x^{2}-(4+m) x+(5-m)(=0)$	$\mathbf{M 1}$	3-term quadratic
	$b^{2}-4 a c=(4+m)^{2}-4 \times 3 \times(5-m)$	$\mathbf{M 1}$	Find $b^{2}-4 a c$ for their quadratic
	$m^{2}+20 m-44$	$\mathbf{A 1}$	
	$(m+22)(m-2)$	$\mathbf{A 1}$	Or use of formula or completing square. This step must be seen
	$m>2, m<-22$	$\mathbf{A 1}$	Allow $x>2, x<-22$
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
5	$\left[7 C 1 a^{6} b(x)\right], \quad\left[7 C 2 a^{5} b^{2}\left(x^{2}\right)\right], \quad\left[7 C 4 a^{3} b^{4}\left(x^{4}\right)\right]$	B2, 1, 0	SOI, can be seen in an expansion.
	$\frac{7 C 2 a^{5} b^{2}\left(x^{2}\right)}{7 C 1 a^{6} b(x)}=\frac{7 C 4 a^{3} b^{4}\left(x^{4}\right)}{7 C 2 a^{5} b^{2}\left(x^{2}\right)} \rightarrow \frac{21 a^{5} b^{2}}{7 a^{6} b}=\frac{35 a^{3} b^{4}}{21 a^{5} b^{2}}$	M1 A1	M1 for a correct relationship OE (Ft from their 3 terms). For A1 binomial coefficients must be correct \& evaluated.
	$\frac{a}{b}=\frac{5}{9}$	A1	OE
		5	

Question	Answer	Marks	Guidance
6(a)	$y=\frac{2 x}{3 x-1} \rightarrow 3 x y-y=2 x \rightarrow 3 x y-2 x=y(\text { or }-y=2 x-3 x y)$	*M1	For 1st two operations. Condone a sign error
	$x(3 y-2)=y \rightarrow x=\frac{y}{3 y-2} \quad\left(\text { or } x=\frac{-y}{2-3 y}\right)$	DM1	For 2nd two operations. Condone a sign error
	$\left(\mathrm{f}^{-1}(x)\right)=\frac{x}{3 x-2}$	A1	Allow $\left(\mathrm{f}^{-1}(x)\right)=\frac{-x}{2-3 x}$
		3	
6(b)	$\left[\frac{2(3 x-1)+2}{3(3 x-1)}\right]=\left[\frac{6 x}{3(3 x-1)}=\frac{2 x}{3 x-1}\right]$	B1 B1	AG, WWW First B1 is for a correct single unsimplified fraction. An intermediate step needs to be shown. Equivalent methods accepted.
		2	

Question	Answer	Marks	Guidance
$6(\mathrm{c})$	$(\mathrm{f}(x))>\frac{2}{3}$	B1	Allow $(y)>\frac{2}{3}$. Do not allow $x>\frac{2}{3}$
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(a)	$(d=)-\frac{\tan ^{2} \theta}{\cos ^{2} \theta}-\frac{1}{\cos ^{2} \theta}$	B1	Allow sign error(s). Award only at form ($d=$)... stage
	$-\frac{\sin ^{2} \theta}{\cos ^{4} \theta}-\frac{1}{\cos ^{2} \theta} \text { or } \frac{-\sec ^{2} \theta}{\cos ^{2} \theta}$	M1	Allow sign error(s). Can imply B1
	$\frac{-\sin ^{2} \theta-\cos ^{2} \theta}{\cos ^{4} \theta} \text { or } \frac{-\frac{1}{\cos ^{2} \theta}}{\cos ^{2} \theta}$	M1	
	$-\frac{1}{\cos ^{4} \theta}$	A1	AG, WWW
		4	
7(b)	$a=\frac{4}{3}, d=-\frac{16}{9}$	B1	SOI, both required. Allow $a=\frac{1}{\frac{3}{4}}, d=-\frac{1}{\frac{9}{16}}$
	$u_{13}=\frac{1}{\cos ^{2} \theta}-\frac{12}{\cos ^{4} \theta}=\frac{4}{3}+12\left(\frac{-16}{9}\right)$	M1	Use of correct formula with their a and their d. The first 2 steps could be reversed
	-20	A1	WWW
		3	

Question	Answer	Marks	Guidance
8(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=[2] \quad\left[-2(2 x+1)^{-2}\right]$	B1 B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8(2 x+1)^{-3}$	B1	
		3	
8(b)	Set their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempt solution	M1	
	$(2 x+1)^{2}=1 \rightarrow 2 x+1=(\pm) 1$ or $4 x^{2}+4 x=0 \rightarrow(4) x(x+1)=0$	M1	Solving as far as $x=\ldots$
	$x=0$	A1	WWW. Ignore other solution.
	$(0,2)$	A1	One solution only. Accept $x=0, y=2$ only.
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ from a solution $x>-\frac{1}{2}$ hence minimum	B1	Ignore other solution. Condone arithmetic slip in value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. Their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ must be of the form $k(2 x+1)^{-3}$
		5	

Question	Answer	Marks	Guidance
$9(\mathrm{a})$	$\cos B A O=\frac{6}{8}$ or $\frac{8^{2}+12^{2}-8^{2}}{2 \times 8 \times 12}$	M1	Or other correct method
	$B A O=0.723$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
9(b)	Sector $A B C=1 / 2 \times 12^{2} \times$ their 0.7227	*M1	Accept 52.1
	Triangle $A O B=1 / 2 \times 8 \times 12 \sin ($ their 0.7227$)$ or $1 / 2 \times 12 \times \sqrt{28}$	*M1	or $1 / 2 \times 8 \times 8 \sin (\pi-2 \times$ their 0.7227$)$. Expect 31.7 or 31.8
	Shaded area $=$ their $52.0-$ their $31.7=20.3$	$\begin{array}{r} \text { DM1 } \\ \text { A1 } \end{array}$	M1 dependent on both previous M marks
		4	
9(c)	Arc $B C=12 \times$ their 0.7227	*M1	Expect 8.67
	Perimeter $=8+4+$ their $8.67=20.7$	$\begin{array}{r} \text { DM1 } \\ \text { A1 } \end{array}$	
		3	

Question	Answer	Marks	Guidance
$10(\mathrm{a})$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{x^{-1 / 2}}{2 k}\right]-\left[\frac{x^{-3 / 2}}{2}\right]+([0])$	B2, 1, $\mathbf{0}$	$([0])$ implies that more than 2 terms counts as an error
	Sub $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ when $x=\frac{1}{4} \quad$ Expect $3=\frac{1}{k}-4$	M1	
	$k=\frac{1}{7}($ or 0.143$)$	$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
10(b)	$\int \frac{1}{k} x^{1 / 2}+x^{-1 / 2}+\frac{1}{k^{2}}=\left[\frac{2 x^{3 / 2}}{3 k}\right]+\left[2 x^{1 / 2}\right]+\left[\frac{x}{k^{2}}\right]$	B2, 1, 0	OE
	$\left(\frac{2 k^{2}}{3}+2 k+1\right)-\left(\frac{k^{2}}{12}+k+\frac{1}{4}\right)$	M1	Apply limits $\frac{k^{2}}{4} \rightarrow k^{2}$ to an integrated expression. Expect $\frac{7}{12} k^{2}+k+\frac{3}{4}$
	$\frac{7}{12} k^{2}+k+\frac{3}{4}=\frac{13}{12}$	M1	Equate to $\frac{13}{12}$ and simplify to quadratic. OE, expect $7 k^{2}+12 k-4(=0)$
	$k=\frac{2}{7}$ only (or 0.286)	A1	Dependent on $(7 k-2)(k+2)(=0)$ or formula or completing square.
		5	

Question	Answer	Marks	Guidance
11(a)	$(-6-8)^{2}+(6-4)^{2}$	M1	OE
	$=200$	A1	
	$\sqrt{200}>10$, hence outside circle	A1	AG ('Shown' not sufficient). Accept equivalents of $\sqrt{200}>10$
	Alternative method for question 11(a)		
	Radius $=10$ and $C=(8,4)$	B1	
	$\operatorname{Min}(x)$ on circle $=8-10=-2$	M1	
	Hence outside circle	A1	AG
		3	
11(b)	$\text { angle }=\sin ^{-1}\left(\frac{\text { their } 10}{\text { their } 10 \sqrt{2}}\right)$	M1	Allow decimals for $10 \sqrt{ } 2$ at this stage. If cosine used, angle $A C T$ or $B C T$ must be identified, or implied by use of $90^{\circ}-45^{\circ}$.
	$\text { angle }=\sin ^{-1}\left(\frac{1}{\sqrt{2}} \text { or } \frac{\sqrt{2}}{2} \text { or } \frac{10}{10 \sqrt{2}} \text { or } \frac{10}{\sqrt{200}}\right)=45^{\circ}$	A1	AG Do not allow decimals
	Alternative method for question 11(b)		
	$\left(10 \sqrt{2}^{2}=10^{2}+T A^{2}\right.$	M1	
	$T A=10 \rightarrow 45^{\circ}$	A1	AG
		2	

Question	Answer	Marks	Guidance
11(c)	Gradient, m, of $C T=-\frac{1}{7}$	B1	OE
	Attempt to find mid-point (M) of $C T$	*M1	Expect (1, 5)
	Equation of $A B$ is $y-5=7(x-1)$	DM1	$\text { Through their }(1,5) \text { with gradient }-\frac{1}{m}$
	$y=7 x-2$	A1	
		4	
11(d)	$(x-8)^{2}+(7 x-2-4)^{2}=100$ or equivalent in terms of y	M1	Substitute their equation of $A B$ into equation of circle.
	$50 x^{2}-100 x(=0)$	A1	
	$x=0$ and 2	A1	www
	Alternative method for question 11(d)		
	$\mathbf{M C}=\binom{7}{-1}$	M1	
	$\binom{1}{5}+\binom{-1}{-7}=\binom{0}{-2},\binom{1}{5}+\binom{1}{7}=\binom{2}{12}$	A1	
	$x=0$ and 2	A1	
		3	

Cambridge International AS \& A Level

MATHEMATICS
 9709/11
 Paper 1 Pure Mathematics 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$1-\frac{1}{x}+\frac{1}{4 x^{2}}$	B1	OE. Multiply or use binomial expansion. Allow unsimplified.
		1	
1(b)	$1+12 x+60 x^{2}+160 x^{3}$	B2, 1, 0	Withhold 1 mark for each error; B2, 1, 0 . ISW if more than 4 terms in the expansion.
		2	
1(c)	their $(1 \times 12)+$ their $(-1 \times 60)+$ their $\left(\frac{1}{4} \times 160\right)$	M1	Attempts at least 2 products where each product contains one term from each expansion.
	$[12-60+40=]-8$	A1	Allow -8x.
		2	

PUBLISHED

Question	Answer	Marks	Guidance
2	$k x^{2}+2 x-k=k x-2$ leading to $k x^{2}+(-k+2) x-k+2[=0]$	*M1	Eliminate y and form 3-term quadratic. Allow 1 error.
	$(-k+2)^{2}-4 k(-k+2)$	DM1	Apply $b^{2}-4 a c$; allow 1 error but a, b and c must be correct for their quadratic.
	$5 k^{2}-12 k+4$ or $(-k+2)(-k+2-4 k)$	A1	May be shown in quadratic formula.
	$(-k+2)(-5 k+2)$	DM1	Solving a 3-term quadratic in k (all terms on one side) by factorising, use of formula or completing the square. Factors must expand to give their coefficient of k^{2}.
	$\frac{2}{5}<k<2$	A1	WWW, accept two separate correct inequalities. If M0 for solving quadratic, SC B1 can be awarded for correct final answer.
		5	

Question	Answer	Marks	Guidance
3	$3 \cos \theta(2 \tan \theta-1)+2(2 \tan \theta-1)[=0]$	M1	Or similar partial factorisation; condone sign errors.
	$(2 \tan \theta-1)(3 \cos \theta+2)[=0]$ [leading to $\tan \theta=\frac{1}{2}, \cos \theta=-\frac{2}{3}$]	M1	OE. At least 2 out of 4 products correct.
	$26.6^{\circ}, 131.8^{\circ}$	A1 A1	WWW. Must be 1 d.p. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2 \tan \theta-1$ leading to 131.8° or division by $3 \cos \theta+2$ or similar leading to 26.6°.
	Alternative method for question 3		
	$\begin{aligned} & 6 \cos \theta\left(\frac{\sin \theta}{\cos \theta}\right)-3 \cos \theta+4\left(\frac{\sin \theta}{\cos \theta}\right)-2[=0] \\ & 6 \cos \theta \sin \theta-3 \cos ^{2} \theta+4 \sin \theta-2 \cos \theta[=0] \\ & 2 \sin \theta(3 \cos \theta+2)-\cos \theta(3 \cos \theta+2) \quad[=0] \end{aligned}$	M1	Using $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and reaching a partial factorisation; condone sign errors.
	$\begin{aligned} & (2 \sin \theta-\cos \theta)(3 \cos \theta+2) \quad[=0] \\ & {\left[\text { leading to } \tan \theta=\frac{1}{2}, \cos \theta=-\frac{2}{3}\right]} \end{aligned}$	M1	At least 2 out of 4 products correct.
	$26.6^{\circ}, 131.8^{\circ}$	A1 A1	WWW. Must be $1 \mathrm{~d} . \mathrm{p}$. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2 \tan \theta-1$ leading to 131.8° or division by $3 \cos \theta+2$ or similar leading to 26.6°.
		4	

Question	Answer	Marks	Guidance
4(a)	$\frac{5 a}{1-\left(\pm \frac{1}{4}\right)}$	B1	Use of correct formula for sum to infinity.
	$\frac{8}{2}[2 a+7(-4)]$	*M1	Use of correct formula for sum of 8 terms and form equation; allow 1 error.
	$4 a=8 a-112$ leading to $a=[28]$	DM1	Solve equation to reach a value of a.
	$a=28$	A1	Correct value.
		4	
4(b)	their $28+(k-1)(-4)=0$	M1	Use of correct method with their a.
	$[k=] 8$	A1	
		2	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	$a=5$	$\mathbf{B 1}$	
	$b=2$	B1	
	$c=3$	B1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$5(\mathrm{~b})$ (i)	3	B1	
		$\mathbf{1}$	
$5(\mathrm{~b})$ (ii)	2	B1	
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
6(a)	Recognise that at least one of angles A, B, C is $\frac{\pi}{3}$	B1	SOI; allow 60°
	One arc $6 \times$ their $\frac{\pi}{3}$ leading to two arcs $2 \times 6 \times$ their $\frac{\pi}{3}$	M1	SOI e.g. may see 2π or 4π. Use of correct formula for length of arc and multiply by 2.
	Perimeter $=6+4 \pi$	A1	Must be exact value.
	Alternative method for question 6(a)		
	Calculate circumference of whole circle $=12 \pi$	B1	
	One arc $\frac{1}{6} \times 12 \pi \quad$ leading to two $\operatorname{arcs} 2 \times \frac{1}{6} \times 12 \pi$	M1	SOI e.g. may see 2π or 4π.
	Perimeter $=6+4 \pi$	A1	Must be exact value.
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6(b)	Sector $=\frac{1}{2} \times 6^{2} \times$ their $\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π.
	$\frac{1}{2} \times\left(6^{2}\right) \times$ their $\left(\frac{\pi}{3}\right)-\frac{1}{2} \times\left(6^{2}\right) \times \sin \left(\right.$ their $\left.\left(\frac{\pi}{3}\right)\right)+6 \pi[=6 \pi-9 \sqrt{3}+6 \pi]$	M1 A1	M1 for attempt at strategy with values substituted: area of segment + area of sector A1 if correct (unsimplified).
	Area $=12 \pi-9 \sqrt{3}$	A1	Must be simplified exact value.
	Alternative method for question 6(b)		
	Sector $=\frac{1}{2} \times 6^{2} \times$ their $\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π.
	$2 \times\left(\frac{1}{2} \times 6^{2} \times\right.$ their $\left.\left(\frac{\pi}{3}\right)\right)-\frac{1}{2} \times\left(6^{2}\right) \times \sin \left(\right.$ their $\left.\left(\frac{\pi}{3}\right)\right)$	M1 A1	M1 for attempt at strategy with values substituted: $2 \times$ sector - triangle A1 if correct (unsimplified).
	Area $=12 \pi-9 \sqrt{3}$	A1	Must be simplified exact value.
	Alternative method for question 6(b)		
	Sector $=\frac{1}{2} \times 6^{2} \times$ their $\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π.
	$\begin{aligned} & 2 \times\left(\frac{1}{2} \times\left(6^{2}\right) \times \text { their }\left(\frac{\pi}{3}\right)-\frac{1}{2} \times\left(6^{2}\right) \times \sin \left(\text { their }\left(\frac{\pi}{3}\right)\right)\right)+ \\ & \frac{1}{2} \times\left(6^{2}\right) \times \sin \left(\text { their }\left(\frac{\pi}{3}\right)\right)[=12 \pi-18 \sqrt{3}+9 \sqrt{3}] \end{aligned}$	M1 A1	M1 for attempt at strategy with values substituted: $2 \times$ segment + triangle A1 if correct (unsimplified).
	Area $[=6 \pi-9 \sqrt{3}+6 \pi]=12 \pi-9 \sqrt{3}$	A1	Must be simplified exact value.
		4	

Question	Answer	Marks	Guidance
7(a)	$r^{2}\left[=(5-2)^{2}+(7-5)^{2}\right]=13$	B1	$r^{2}=13$ or $r=\sqrt{13}$
	Equation of circle is $(x-5)^{2}+(y-2)^{2}=13$	B1 FT	OE. FT on their 13 but LHS must be correct.
		2	
7(b)	$(x-5)^{2}+(5 x-10-2)^{2}=13$	M1	Substitute $y=5 x-10$ into their equation.
	$26 x^{2}-130 x+156[=0]$	A1 FT	OE 3-term quadratic with all terms on one side. FT on their circle equation.
	$[26](x-2)(x-3)[=0]$	M1	Solve 3-term quadratic in x by factorising, using formula or completing the square. Factors must expand to give their coefficient of x^{2}.
	$(2,0),(3,5)$	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.
	$(A B)^{2}=(3-2)^{2}+(5-0)^{2}$	M1	SOI. Using their points to find length of $A B$.
	$A B=\sqrt{26}$	A1	ISW. Dependent on final M1 only.

PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	$\left(\frac{y+10}{5}-5\right)^{2}+(y-2)^{2}=13$	M1	Substitute $x=\frac{y+10}{5}$ into their equation.
	$\frac{26 y^{2}}{25}-\frac{26 y}{5}[=0]$	A1 FT	OE 2-term quadratic with all terms on one side. FT on their circle equation.
	$[26] y(y-5)[=0]$	M1	Solve 2-term quadratic in y by factorising, using formula or completing the square. Factors must expand to give their coefficient of y^{2}.
	$(2,0),(3,5)$	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.
	$(A B)^{2}=(3-2)^{2}+(5-0)^{2}$	M1	SOI. Using their points to find length of $A B$.
	$A B=\sqrt{26}$	A1	ISW. Dependent on final M1 only.
		7	

Question	Answer	Marks	Guidance
8(a)	$\left\{-3(x-2)^{2}\right\} \quad\{+14\}$	B1 B1	B1 for each correct term; condone $a=2, b=14$.
		2	
8(b)	$[k=] 2$	B1	Allow $[x] \leqslant 2$.
		1	

Question	Answer	Marks	Guidance
8(c)	[Range is] $[y] \leqslant-13$	B1	Allow $[\mathrm{f}(x)] \leqslant-13,[\mathrm{f}] \leqslant-13$ but NOT $x \leqslant-13$.
		1	
8(d)	$y=-3(x-2)^{2}+14$ leading to $(x-2)^{2}=\frac{14-y}{3}$	M1	Allow $\frac{y-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
	$x=2(\pm) \sqrt{\frac{14-y}{3}}$	A1	Allow $\frac{y-14}{-3}$.
	$\left[\mathrm{f}^{-1}(x)\right]=2-\sqrt{\frac{14-x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root only.
	Alternative method for question 8(d)		
	$x=-3(y-2)^{2}+14$ leading to $(y-2)^{2}=\frac{14-x}{3}$	M1	Allow $\frac{x-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
	$=2(\pm) \sqrt{\frac{14-x}{3}}$	A1	Allow $\frac{x-14}{-3}$
	$\left[\mathrm{f}^{-1}(x)\right]=2-\sqrt{\frac{14-x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root only.
		3	

Question	Answer	Marks	Guidance
$8(\mathrm{e})$	$[\mathrm{g}(x)=]\left\{-3(x+3-2)^{2}\right\}+\{14+1\}$	$\mathbf{B 2 , 1 , 0}$	OR $\left\{-3(x+3)^{2}\right\}+\{12(x+3)\}+\{3\}$
	$\mathrm{g}(x)=-3 x^{2}-6 x+12$	$\mathbf{B 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$9(\mathrm{a})$	$\mathrm{f}(x)=\frac{2}{3} x^{3}-7 x+4 x^{-1}[+c]$	$\mathbf{B 2 , 1 , 0}$	Allow terms on different lines; allow unsimplified.
	$-\frac{1}{3}=\frac{2}{3}-7+4+c \quad$ leading to $c=[2]$	$\mathbf{M 1}$	Substitute $\mathrm{f}(1)=-\frac{1}{3}$ into an integrated expression and evaluate c.
	$\mathrm{f}(x)=\frac{2}{3} x^{3}-7 x+4 x^{-1}+2$	$\mathbf{A 1}$	OE.
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
9(b)	$2 x^{4}-7 x^{2}-4[=0]$	M1	Forms 3-term quadratic in x^{2} with all terms on one side. Accept use of substitution e.g. $2 y^{2}-7 y-4[=0]$.
	$\left(2 x^{2}+1\right)\left(x^{2}-4\right)[=0]$	M1	Attempt factors or use formula or complete the square. Allow \pm sign errors. Factors must expand to give their coefficient of x^{2} or e.g. y. Must be quartic equation. Accept use of substitution e.g. $(2 y+1)(y-4)$.
	$x=[\pm] 2$	A1	If M0 for solving quadratic, SC B1 can be awarded for $[\pm] 2$.
	$\begin{aligned} & {\left[\frac{2}{3}(2)^{3}-7(2)+\frac{4}{2}+2 \quad \text { leading to }\right]\left(2,-\frac{14}{3}\right)} \\ & {\left[\frac{2}{3}(-2)^{3}-7(-2)+\frac{4}{-2}+2 \quad \text { leading to }\right]\left(-2, \frac{26}{3}\right)} \end{aligned}$	B1 B1	B1 B1 for correct coordinates clearly paired; B1 for each correct point; B 1 B 0 if additional point.
		5	
9(c)	$\mathrm{f}^{\prime \prime}(x)=4 x+8 x^{-3}$	B1	OE
		1	

Question	Answer	Marks	Guidance
9(d)	$\mathrm{f}^{\prime \prime}(2)=9>0$ MINIMUM at $x=$ their 2	B1 FT	FT on their $x=[\pm] 2$ provided $\mathrm{f}^{\prime \prime}(x)$ is correct. Must have correct value of $\mathrm{f}^{\prime \prime}(x)$ if $x=2$.
	$\mathrm{f}^{\prime \prime}(-2)=-9<0 \quad$ MAXIMUM at $x=$ their -2	B1 FT	FT on their $x=[\pm] 2$ provided $\mathrm{f}^{\prime \prime}(x)$ is correct. Must have correct value of $\mathrm{f}^{\prime \prime}(x)$ if $x=-2$. Special case: If values not shown and B0B0 scored, SC B1 for $\mathrm{f}^{\prime \prime}(2)>0 \mathrm{MIN}$ and $\mathrm{f}^{\prime \prime}(-2)<0$ MAX
	Alternative method for question 9(d)		
	Evaluate $\mathrm{f}^{\prime}(x)$ for x-values either side of 2 and -2	M1	FT on their $x=[\pm] 2$
	MINIMUM at $x=$ their 2 , MAXIMUM at $x=$ their 2	A1 FT	FT on their $x=[\pm] 2$. Must have correct values of $\mathrm{f}^{\prime}(x)$ if shown. Special case: If values not shown and M0A0 scored SC B1 $\mathrm{f}^{\prime}(2)$-/0/+ MIN and $\mathrm{f}^{\prime}(-2)+/ 0 /-$ MAX
	Alternative method for question 9(d)		
	Justify maximum and minimum using correct sketch graph	B1 B1	Need correct coordinates in (b) for this method.
		2	

Question	Answer	Marks	Guidance
10(a)	$\left\{\frac{(3 x-2)^{-\frac{1}{2}}}{-1 / 2}\right\} \div\{3\}$	B2, 1, 0	Attempt to integrate
	$-\frac{2}{3}[0-1]$	M1	M1 for applying limits $1 \rightarrow \infty$ to an integrated expression (either correct power or dividing by their power).
	$\frac{2}{3}$	A1	
		4	
10(b)	$[\pi] \int y^{2} \mathrm{~d} x=[\pi] \int(3 x-2)^{-3} \mathrm{~d} x=[\pi] \frac{(3 x-2)^{-2}}{-2 \times 3}$	*M1 A1	M1 for attempt to integrate y^{2} (power increases); allow 1 error. A1 for correct result in any form.
	$[\pi]\left[-\frac{1}{6}\right]\left[\frac{1}{16}-1\right]$	DM1	Apply limits 1 and 2 to an integrated expression and subtract correctly; allow 1 error.
	$\frac{5 \pi}{32}$	A1	OE
		4	

Question	Answer	Marks	Guidance
10(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3}{2} \times 3(3 x-2)^{-\frac{5}{2}}$	M1	M1 for attempt to differentiate (power decreases); allow 1 error.
	At $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{9}{2}$	*M1	Substitute $x=1$ into their differentiated expression; allow 1 error.
	[Equation of normal is] $y-1=\frac{2}{9}(x-1)$ OR evaluates c	DM1	Forms equation of line or evaluates c using $(1,1)$ and gradient $\frac{-1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}}$.
	At $A, \quad y=\frac{7}{9}$	A1	OE e.g. AWRT 0.778 ; must clearly identify y-intercept
		4	

Cambridge International AS \& A Level

MATHEMATICS

9709/12
Paper 1 Pure Mathematics 1
October/November 2021
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$2 \cos ^{2} \theta-7 \cos \theta+3[=0]$	M1	Forming a 3-term quadratic expression with all terms on the same side or correctly set up prior to completing the square. Allow \pm sign errors.
	$(2 \cos \theta-1)(\cos \theta-3)=0$	DM1	Solving their 3-term quadratic using factorisation, formula or completing the square.
	[$\cos \theta=\frac{1}{2}$ or $\cos \theta=3$ leading to] $\theta=-60^{\circ}$ or $\theta=60^{\circ}$	A1	
	$\theta=-60^{\circ}$ and $\theta=60^{\circ}$	A1 FT	FT for \pm same answer between 0° and 90° or 0 and $\frac{\pi}{2}$. $\pm \frac{\pi}{3}$ or ± 1.05 AWRT scores maximum M1M1A0A1FT. Special case: If M1 DM0 scored then SC B1 for $\theta=-60^{\circ}$ or $\theta=60^{\circ}$, and SC B1 FT can be awarded for $\pm\left(\right.$ their $\left.60^{\circ}\right)$.
		4	

Question	Answer	Marks	Guidance
$2($ a)	Stretch with [scale factor] either ± 2 or $\pm \frac{1}{2}$	B1	
	Scale factor $\frac{1}{2}$ in the x-direction	B1	
	Translation $\binom{0}{-3}$ or translation of 3 units in negative y-direction	B1	
		B1 B1	B1 for each correct co-ordinate.
	$(10,9)$	$\mathbf{2}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$3(\mathrm{a})$	$\mathrm{f}(5)=[2]$ and $\mathrm{f}($ their 2$)=[5]$ OR $\mathrm{ff}(5)=\left[\frac{2+3}{2-1}\right]$	M1	Clear evidence of applying f twice with $x=5$.
	OR $\frac{x+3}{\frac{x-1}{x+3}+3}$ and an attempt to substitute $x=5$.		
	5	A1	

Question	Answer	Marks	Guidance
$3(\mathrm{~b})$	$\frac{x+3}{x-1}=y \Rightarrow x+3=x y-y$ OR $\frac{y+3}{y-1}=x \Rightarrow y+3=x y-x$	$* \mathbf{M 1}$	Setting $\mathrm{f}(x)=y$ or swapping x and y, clearing of fractions and expanding brackets. Allow \pm sign errors.
	$x y-x=y+3 \Rightarrow x=\frac{y+3}{y-1}$ OE OR $y+3=x y-x \Rightarrow y=\left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or $y=$. Allow \pm sign errors.
	$\left[\mathrm{f}^{-1}(x)\right.$ or $\left.y\right]=\frac{\boldsymbol{x}+3}{\boldsymbol{x}-1}$	A1	OE e.g. $1+\frac{4}{x-1}$ etc. Must be a function of x, cannot be $x=$.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4	$\frac{8}{3}$	*B1	For $(3 x+2)^{-1}$
	$y=-\frac{e^{(3 x+2)}}{}[+c]$	DB1	$\text { For }-\frac{8}{3}$
	$5 \frac{2}{3}=-\frac{\frac{8}{3}}{(3 \times 2+2)}+c$	M1	Substituting $\left(2,5 \frac{2}{3}\right)$ into their integrated expression defined by power $=-1$, or dividing by their power. $+c$ needed
	$y=-\frac{8}{3(3 x+2)}+6$	A1	OE e.g. $y=-\frac{8}{3}(3 x+2)^{-1}+6$
		4	

Question	Answer	Marks	Guidance
5(a)	$\begin{aligned} & {\left[\left(3^{\text {rd }} \text { term }-1^{\text {st }} \text { term }\right)=\left(5^{\text {th }} \text { term }-3^{\text {rd }} \text { term }\right) \text { leading to } \ldots\right]} \\ & -6 \sqrt{3} \sin x-2 \cos x=10 \cos x+6 \sqrt{3} \sin x \\ & {[\text { leading to }-12 \sqrt{3} \sin x=12 \cos x]} \\ & \text { OR } \\ & {\left[\left(1^{\text {st }} \text { term }+5^{\text {th }} \text { term }\right)=2 \times 3^{\text {rd }} \text { term leading to } \ldots\right] 12 \cos x=-12 \sqrt{3} \sin x} \end{aligned}$	*M1	OE. From the given terms, obtain 2 expressions relating to the common difference of the arithmetic progression, attempt to solve them simultaneously and achieve an equation just involving $\sin x$ and $\cos x$.
	Elimination of $\sin x$ and $\cos x$ to give an expression in $\tan x$ $\left[\tan x=-\frac{1}{\sqrt{3}}\right]$	DM1	For use of $\frac{\sin x}{\cos x}=\tan x$
	$[x=] \frac{5 \pi}{6}$ only	A1	CAO. Must be exact.
		3	
5(b)	$d=2 \cos x$ or $d=2 \cos ($ their $x)$	B1 FT	Or an equivalent expression involving $\sin x$ and $\cos x$ e.g. $-3 \sqrt{3} \sin ($ their $x)-\cos ($ their $x)[=-\sqrt{3}]$ FT for their x from (a) only. If not $\pm \sqrt{3}$, must see unevaluated form.
	$\begin{aligned} & \mathrm{S}_{25}=\frac{25}{2}(2 \times(2 \cos (\text { their } x))+(25-1) \times(\text { their } d)) \\ & {[=12.5(2 \times(-\sqrt{3})+24(-\sqrt{3}))]} \end{aligned}$	M1	Using the correct sum formula with $\frac{25}{2},(25-1)$ and with a replaced by either $2(\cos ($ their $x))$ or $\pm \sqrt{3}$ and d replaced by either $2(\cos ($ their $x))$ or $\pm \sqrt{3}$.
	$-325 \sqrt{3}$	A1	Must be exact.
		3	

Question	Answer	Marks	Guidance
6	$a r=54 \text { and } \frac{a \text { or their } a}{1-r}=243$	B1	SOI
	$\frac{54}{r}=243(1-r)$ leading to $243 r^{2}-243 r+54[=0]\left[9 r^{2}-9 r+2=0\right]$ OR $a^{2}-243 a+13122[=0]$	*M1	Forming a 3-term quadratic expression in r or a using their 2 nd term and S_{∞}. Allow \pm sign errors.
	$k(3 r-2)(3 r-1)[=0]$ OR $(a-81)(a-162)[=0]$	DM1	Solving their 3-term quadratic using factorisation, formula or completing the square. If factorising, factors must expand to give \pm their coefficient of r^{2}.
	$54 \div\left(\right.$ their $\left.\frac{2}{3}\right)=a$ OR $54 \div($ their 81$)=r$	DM1	May be implied by final answer.
	Tenth term $=\frac{512}{243}\left[\right.$ OR $81 \times\left(\frac{2}{3}\right)^{9}$ OR $\left.54 \times\left(\frac{2}{3}\right)^{8}\right]$	A1	OE. Must be exact. Special case: If B1M1DM0DM1 scored then SC B1 can be awarded for the correct final answer.
		5	

Question	Answer	Marks	Guidance
7(a)	EITHER By using trigonometry: $B \hat{A} C=0.6435 \ldots$ and $A \hat{B} C=\frac{\pi-0.6435}{2}$ OR By Pythagoras: $A P=12 \Rightarrow B P=3$ so $\tan A \hat{B} C=\frac{9}{3}$ OR Using $\triangle P B C$ and either the sine or cosine rule $\sin A \hat{B} C=\frac{3}{\sqrt{10}}$ or $\cos A \hat{B} C=\frac{\sqrt{10}}{10}$	M1	$\frac{3}{\sqrt{10}}=0.9486 \ldots \frac{\sqrt{10}}{10}=0.3162 \ldots$
	$\begin{aligned} & A \hat{B} C=\frac{\pi-0.6435}{2} \text { or } \tan ^{-1} \frac{9}{3} \text { or } \sin ^{-1} \frac{3}{\sqrt{10}} \text { or } \cos ^{-1} \frac{\sqrt{10}}{10} \text { or } \\ & 1.249(04 \ldots) \text { or } 71.56^{\circ}=1.25 \text { radians }(3 \mathrm{sf}) \end{aligned}$	A1	AG. Final answer must be 1.25 , more accurate value $1.24904 \ldots$ with no rounding to 3 sf seen as the final answer gets M1A0. If decimals are used all values must be given to at least 4 sf for A1.
		2	
7(b)	$B C=\sqrt{(\text { their } 3)^{2}+9^{2}} \text { or } \frac{9}{\sin 1.25}[=\sqrt{90}, 3 \sqrt{10} \text { or } 9.48697 \ldots]$	M1	Using correct method(s) to find $B C$.
	Area of sector $=\frac{1}{2} \times(\text { their } B C)^{2} \times \tan ^{-1} 3[=56.207$ or 56.25$]$	M1	Using $\tan ^{-1} 3$ or 1.25 and their $B C$, but not 9 or 15 , in correct area of sector formula.
	Area of triangle $P B C=13.4$ to 13.6 or $\frac{1}{2} \times 9 \times 3$	B1	
	[$\mathrm{Area}=(56.207$ or 56.25$)-$ their $13.5=$] 42.7 or 42.8	A1	AWRT
		4	

Question	Answer	Marks	Guidance
8(a)	Terms required for $x^{2}:-5 \times 2^{4} \times a x+10 \times 2^{3} \times a^{2} x^{2}\left[=-80 a x+80 a^{2} x^{2}\right]$	B1	Can be seen as part of an expansion or in correct products.
	$2 \times(\pm$ their coefficient of $x)+4 \times\left(\pm\right.$ their coefficient of $\left.x^{2}\right)$	*M1	
	$\begin{aligned} & x^{2} \text { coefficient is } 320 a^{2}-160 a=-15 \\ & \Rightarrow 64 a^{2}-32 a+3 \Rightarrow(8 a-3)(8 a-1) \end{aligned}$	DM1	Forming a 3 -term quadratic in a, with all terms on the same side or correctly setting up prior to completing the square and solving using factorisation, formula or completing the square. If factorising, factors must expand to give their coefficient of a^{2} 。
	$a=\frac{1}{8}$ or $a=\frac{3}{8}$	A1	OE. Special case: If DM0 for solving quadratic, SC B1 can be awarded for correct final answers.
		4	

Question	Answer	Marks	Guidance
8(b)	$320 a^{2}-160 a=k \Rightarrow 320 a^{2}-160 a-k[=0]$	M1	Forming a 3-term quadratic in a with all terms on the same side. Allow \pm sign errors.
	Their $b^{2}-4 a c[=0],\left[160^{2}-4 \times 320 \times(-k)=0\right]$	M1	Any use of discriminant on a 3-term quadratic.
	$k=-20$	A1	
	$a=\frac{1}{4}$	B1	Condone $a=\frac{1}{4}$ from $k=20$.
	Alternative method for question 8(b)		
	$320 a^{2}-160 a=k$ and divide by $320\left[a^{2}-\frac{a}{2}=\frac{k}{320}\right]$	M1	Allow \pm sign errors.
	Attempt to complete the square $\left[\left(a-\frac{1}{4}\right)^{2}-\frac{1}{16}=\frac{k}{320}\right]$	M1	Must have $\left(a-\frac{1}{4}\right)^{2}$
	$a=\frac{1}{4}$	A1	
	$k=-20$	B1	

Question	Answer	Marks	Guidance
8(b) cont'd	Alternative method for question 8(b)		
	$320 a^{2}-160 a=k$ and attempt to differentiate LHS [640a-160]	M1	Allow \pm sign errors.
	Setting their $(640 a-160)=0$ and attempt to solve.	M1	
	$a=\frac{1}{4}$	A1	
	$k=-20$	B1	
		4	

Question	Answer	Marks	Guidance
9(a)	$\left[\frac{\mathrm{d} V}{\mathrm{~d} r}=\right] \frac{9}{2}\left(r-\frac{1}{2}\right)^{2}$	B1	OE. Accept unsimplified.
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1.5}{\text { their } \frac{\mathrm{d} V}{\mathrm{~d} r}}\left[=\frac{1.5}{\frac{9}{2}\left(5.5-\frac{1}{2}\right)^{2}}=\frac{1.5}{112.5}\right]$	M1	Correct use of chain rule with 1.5 , their differentiated expression for $\frac{\mathrm{d} V}{\mathrm{~d} r}$ and using $r=5.5$.
	0.0133 or $\frac{3}{225}$ or $\frac{1}{75}$ [metres per second]	A1	
		3	
9(b)	$\frac{\mathrm{d} V}{\mathrm{~d} r}$ or their $\frac{\mathrm{d} V}{\mathrm{~d} r}=\frac{1.5}{0.1}$ or 15 OR $0.1=\frac{1.5}{\text { their } \frac{\mathrm{d} V}{\mathrm{~d} r}}\left[=\frac{2 \times 1.5}{9\left(r-\frac{1}{2}\right)^{2}}\right.$ OE $]$	B1 FT	Correct statement involving $\frac{\mathrm{d} V}{\mathrm{~d} r}$ or their $\frac{\mathrm{d} V}{\mathrm{~d} r}, 1.5$ and 0.1 .
	$\left[\frac{9}{2}\left(r-\frac{1}{2}\right)^{2}=15 \Rightarrow\right] r=\frac{1}{2}+\sqrt{\frac{10}{3}}$	B1	OE e.g. AWRT 2.3 Can be implied by correct volume.
	[Volume $=$] 8.13 AWRT	B1	OE e.g. $\frac{-3+5 \sqrt{30}}{3}$. CAO.
		3	

Question	Answer	Marks	Guidance
10(a)	$\left[\mathrm{f}^{\prime}(x)=\right] 2 x-\frac{k}{x^{2}}$	B1	
	$\mathrm{f}^{\prime}(2)=0\left[2 \times 2-\frac{k}{2^{2}}=0\right] \Rightarrow k=\ldots$	M1	Setting their 2 -term $\mathrm{f}^{\prime}(2)=0$, at least one term correct and attempting to solve as far as $k=$.
	$k=16$	A1	
		3	
10(b)	$\mathrm{f}^{\prime \prime}(2)=$ e.g. $2+\frac{2 k}{2^{3}}$	M1	Evaluate a two term $\mathrm{f}^{\prime \prime}(2)$ with at least one term correct. Or other valid method.
	$\left[2+\frac{2 k}{2^{3}}\right]>0 \Rightarrow$ minimum or $=6 \Rightarrow$ minimum	A1 FT	WWW. FT on positive k value.
		2	
10(c)	When $x=2, \mathrm{f}(x)=14$	B1	SOI
	[Range is or y or $\mathrm{f}(x)] \geqslant$ their $\mathrm{f}(2)$	B1 FT	Not $x \geqslant$ their $\mathrm{f}(2)$
		2	

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}+\frac{1}{3(x-2)^{\frac{4}{3}}}$	B1	OE. Allow unsimplified.
	Attempt at evaluating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=3\left[\frac{1}{2}+\frac{1}{3(3-2)^{\frac{4}{3}}}=\frac{5}{6}\right]$	*M1	Substituting $x=3$ into their differentiated expression defined by one of 3 original terms with correct power of x.
	$\text { Gradient of normal }=\frac{-1}{\text { their } \frac{d y}{d x}}\left[=-\frac{6}{5}\right]$	*DM1	Negative reciprocal of their evaluated $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
	Equation of normal $y-\frac{6}{5}=($ their normal gradient $)(x-3)$ $\left[y=-\frac{6}{5} x+4.8 \Rightarrow 5 y=-6 x+24\right]$	DM1	Using their normal gradient and A in the equation of a straight line. Dependent on *M1 and *DM1.
	[When $y=0,] x=4$	A1	or (4, 0)
		5	

Question	Answer	Marks	Guidance
11(b)	$\text { Area under curve }=\int\left(\frac{1}{2} x+\frac{7}{10}-\frac{1}{(x-2)^{\frac{1}{3}}}\right)[\mathrm{d} x]$	M1	For intention to integrate the curve (no need for limits). Condone inclusion of π for this mark.
	$\frac{1}{4} x^{2}+\frac{7}{10} x-\frac{3(x-2)^{\frac{2}{3}}}{2}$	A1	For correct integral. Allow unsimplified. Condone inclusion of π for this mark.
	$\left(\frac{9}{4}+2.1-\frac{3}{2}\right)-\left(\frac{6.25}{4}+1.75-\frac{3 \times 0.5^{\frac{2}{3}}}{2}\right)$	M1	Clear substitution of 3 and 2.5 into their integrated expression (with at least one correct term) and subtracting.
	0.48[24]	A1	If M1A1M0 scored then SC B1 can be awarded for correct answer.
	[Area of triangle $=$] 0.6	B1	OE
	[Total area $=$] 1.08	A1	Dependent on the first M1 and WWW.
		6	

Question	Answer	Marks	Guidance
12(a)	Centre is $(3,-2)$	B1	
	$\text { Gradient of radius }=\frac{(\text { their }-2)-4}{(\text { their } 3)-5}[=3]$	*M1	Finding gradient using their centre (not (0,0)) and $P(5,4)$.
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and the negative reciprocal of their gradient to find the equation of $A B$.
	Sight of $[x=] 17$ and $[y=] \frac{17}{3}$	A1	
	$\left[\right.$ Area $\left.=\frac{1}{2} \times \frac{17}{3} \times 17=\right] \frac{289}{6}$	A1	Or $48 \frac{1}{6}$ or AWRT 48.2.
	Alternative method for question 12(a)		
	$2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-6+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	B1	
	At $P: 10+8 \frac{\mathrm{~d} y}{\mathrm{~d} x}-6+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\left[\Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{3}\right]$	*M1	Find the gradient using $P(5,4)$ in their implicit differential (with at least one correctly differentiated y term).
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and their value for the gradient to find the equation of $A B$.
	Sight of $[x=] 17$ and $[y=] \frac{17}{3}$	A1	
	$\left[\right.$ Area $\left.=\frac{1}{2} \times \frac{17}{3} \times 17=\right] \frac{289}{6}$	A1	Or $48 \frac{1}{6}$ or AWRT 48.2.

Question	Answer	Marks	Guidance
$12(\mathrm{a})$cont'd	Alternative method for question 12(a)		
	$\left[y=-2 \pm\left(40-(x-3)^{2}\right)^{\frac{1}{2}}\right.$ OE leading to $] \frac{\mathrm{d} y}{\mathrm{~d} x}=(3-x)\left(31+6 x-x^{2}\right)^{-\frac{1}{2}}$	B1	OE. Correct differentiation of rearranged equation.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(3-5)\left(31+6(5)-(5)^{2}\right)^{-\frac{1}{2}}\left[\Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{3}\right]$	*M1	Find the gradient using $x=5$ in their differential (with clear use of chain rule).
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and their value for the gradient to find the equation of $A B$.
	Sight of $[x=] 17$ and $[y=] \frac{17}{3}$	A1	
	$\left[\right.$ Area $\left.=\frac{1}{2} \times \frac{17}{3} \times 17=\right] \frac{289}{6}$	A1	Or $48 \frac{1}{6}$ or AWRT 48.2.
		5	

Question	Answer	Marks	Guidance
12(b)	Radius of circle $=\sqrt{40}$,	B1	Or $2 \sqrt{10}$ or 6.32 AWRT or $r^{2}=40$.
	Area of $\triangle C R Q=\frac{1}{2} \times(\text { their } r)^{2} \sin 120\left[=\frac{1}{2} \times 40 \times \frac{\sqrt{3}}{2}\right]$ OR Area of $\triangle C Q X=\frac{1}{2} \times \sqrt{40} \cos 30 \times \sqrt{40} \cos 60$ OE $\left[=\frac{1}{2} \times \sqrt{30} \times \sqrt{10}\right]$ OR Area of circle $-3 \times$ Area of segment $=40 \pi-3 \times\left(40 \frac{\pi}{3}-10 \sqrt{3}\right)$ OR $Q R=\sqrt{120}$ or $2 \sqrt{30}$ and area $=\frac{1}{2} Q R^{2} \sin 60$	M1	Using $\frac{1}{2} r^{2} \sin \theta$ with their r and 120 or $60[\times 3]$ Using $\frac{1}{2} \times$ base \times height in a correct right-angled triangle [$\times 6$]. Use of cosine rule and area of large triangle
	$30 \sqrt{3}$	A1	AWRT 52[.0] implies B1M1A0.
		3	See diagram for points stated in 'Answer' column.

Cambridge International AS \& A Level

MATHEMATICS

9709/13
Paper 1 Pure Mathematics 1
October/November 2021
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	\{Reflection $\}$ [[in the] x-axis $\}$ or $\{$ Stretch of scale factor -1$\}$ \{parallel to y-axis \}	*B1 DB1	\{\} indicate how the B1 marks should be awarded throughout.
	Then $\{$ Translation $\}\left\{\binom{0}{3}\right\}$	B1 B1	Or Translation 3 units in the positive y-direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.
	Alternative method for question 1		
	$\{$ Translation $\}\left\{\binom{0}{-3}\right\}$	B1 B1	Or Translation 3 units in the negative y-direction.
	Then $\{$ Reflection $\}$ \{in the x-axis $\}$ or $\{$ Stretch of scale factor -1$\}$ \{parallel to y-axis \}	*B1 DB1	N.B. If order reversed a maximum of 3 out of 4 marks awarded.
		4	

Question	Answer	Marks	
$2(\mathrm{a})$	$1+6 a x+15 a^{2} x^{2}$	B1	Terms must be evaluated.
			$\mathbf{1}$

Question	Answer	Marks	Guidance
3(a)	$\left\{5(y-3)^{2}\right\} \quad\{+5\}$	B1 B1	Accept $a=-3, b=5$
		2	
3(b)	$\left[\mathrm{f}^{\prime}(x)=\right] 5 x^{4}-30 x^{2}+50$	B1	
	$5\left(x^{2}-3\right)^{2}+5$ or $b^{2}<4 a c$ and at least one value of $\mathrm{f}^{\prime}(x)>0$	M1	
	>0 and increasing	A1	WWW
		3	

Question	Answer	Marks	Guidance
$4(\mathrm{a})$	$84-3(n-1)=0$	M1	OE, SOI. Allow either $=0$ or <0 (to -3).
	Smallest n is 30	A1	SC B2 for answer only $n=30$ WWW.
		$\mathbf{2}$	
	$\left(\frac{2 k}{2}\right)[168+(2 k-1)(-3)]=\left(\frac{k}{2}\right)[168+(k-1)(-3)]$	M1 A1	M1 for forming an equation using correct formula. A1 for at least one side correct.
	$k=19$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(a)	Angle $X Y C=\sin ^{-1}\left(\frac{9}{11}\right)=0.9582$ or $\sin X Y C=\frac{9}{11}$ leading to $X Y C=0.9582$	B1	AG. OE using cosine rule.
		1	
5(b)	$X Y=\sqrt{11^{2}-9^{2}}=\sqrt{40}$ or using 0.9582 and trigonometry	*M1 A1	
	$A B=9+11-$ their $X Y$	B1 FT	OE e.g. $20-2 \sqrt{ } 10,2+9-2 \sqrt{10}+11-2 \sqrt{ } 10$
	$\operatorname{Arc} A C=11 \times 0.9582$	M1	
	$\operatorname{Arc} B C=9 \times \frac{\pi}{2}$	M1	
	Perimeter $=[13.6(8)+10.5(4)+14.1(4)=] 38.4$	A1	AWRT. Answer must be evaluated as a single decimal.
		6	

Question	Answer	Marks	Guidance
6(a)		B1	A reflection of the given curve in $y=x$ (the line $y=x$ can be implied by position of curve).
		1	

Question	Answer	Marks	Guidance
6(b)	$y=\frac{-x}{\sqrt{4-x^{2}}}$ leading to $x^{2}=y^{2}\left(4-x^{2}\right)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y
	$x^{2}\left(1+y^{2}\right)=4 y^{2}$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.
	$x=(\pm) \frac{2 y}{\sqrt{1+y^{2}}}$	DM1	$x=(\pm) \sqrt{\left(\frac{4 y^{2}}{\left(1+y^{2}\right.}\right)}$ OE is acceptable for this mark. Isolating the new subject. Order of operations correct. Condone sign errors.
	$\mathrm{f}^{-1}(x)=\frac{-2 x}{\sqrt{1+x^{2}}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.
		4	
6(c)	1 or $a=1$	B1	Do not allow $x=1$ or $-1<x<1$
		1	
6(d)	$[\mathrm{fg}(x)=\mathrm{f}(2 x)=] \frac{-2 x}{\sqrt{4-4 x^{2}}}$	B1	Allow $\frac{-2 x}{\sqrt{4-(2 x)^{2}}}$ or any correct unsimplified form.
	$\operatorname{fg}(x)=\frac{-x}{\sqrt{1-x^{2}}} \text { or } \frac{-x}{1-x^{2}} \sqrt{1-x^{2}} \text { or } \frac{x}{x^{2}-1} \sqrt{1-x^{2}}$	B1	Result of cancelling 2 in numerator and denominator.
		2	

Question	Answer	Marks	Guidance
7(a)	$\tan x+\cos x=k(\tan x-\cos x)$ leading to $\sin x+\cos ^{2} x=k\left(\sin x-\cos ^{2} x\right)$	M1	Use $\tan x=\frac{\sin x}{\cos x}$ and clear fraction.
	$\sin x+1-\sin ^{2} x=k \sin x-k+k \sin ^{2} x$	*M1	Use $\cos ^{2} x=1-\sin ^{2} x$ twice to obtain an equation in sine.
	$k \sin ^{2} x+\sin ^{2} x+k \sin x-\sin x-k-1=0$	DM1	Gather like terms on one side of the equation.
	$(k+1) \sin ^{2} x+(k-1) \sin x-(k+1)=0$	A1	AG. Factorise to obtain answer.
		4	
7(b)	$5 \sin ^{2} x+3 \sin x-5=0$	B1	
	$\sin x=\frac{-3 \pm \sqrt{9+100}}{10}$	M1	Use formula or complete the square.
	$x=48.1^{\circ}, 131.9^{\circ}$	$\begin{array}{r} \text { A1 } \\ \text { A1 FT } \end{array}$	AWRT. Maximum A1 if extra solutions in range. FT for 180 - their answer or 540 - their answer if $\sin x$ is negative If M0 given and correct answers only SCB1B1 available. If answers in radians; $0.839,2.30$ can score SCB1 for both.
		4	

Question	Answer	Marks	Guidance
8(a)	$\int\left(\frac{5}{2}-x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right) \mathrm{d} x$	M1	OR as 2 separate integrals $\int\left(\frac{5}{2}-x^{1 / 2}\right) \mathrm{d} x-\int\left(x^{-1 / 2}\right) \mathrm{d} x$
	$\left\{\frac{5}{2} x-\frac{2}{3} x^{\frac{3}{2}}\right\}\{-\}\left\{2 x^{\frac{1}{2}}\right\}$	A1 A1 A1	If two separate integrals with no subtraction SC B1 for each correct integral.
	$\left(10-\frac{16}{3}-4\right)-\left(\frac{5}{8}-\frac{1}{12}-1\right)$	DM1	Substitute limits $\frac{1}{4} \rightarrow 4$ at least once, must be seen.
	$\frac{9}{8}$ or 1.125	A1	WWW. Cannot be awarded if π appears in any integral.
		6	
8(b)	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right]-\frac{1}{2} x^{-\frac{3}{2}}$	B1	
	When $x=1, m=-\frac{1}{2}$	M1	Substitute $x=1$ into a differential.
	[Equation of normal is] $y-1=2(x-1)$	M1	Through (1, 1) with gradient $-\frac{1}{m}$ or $\frac{1-p}{1}=2$
	[When $x=0,] p=-1$	A1	WWW
		4	

PUBLISHED

Question	Answer	Marks	Guidance
9(a)	$x^{2}+(2 x+5)^{2}=20 \quad$ leading to $x^{2}+4 x^{2}+20 x+25=20$	M1	Substitute $y=2 x+5$ and expand bracket.
	$(5)\left(x^{2}+4 x+1\right)[=0]$	A1	3-term quadratic.
	$x=\frac{-4 \pm \sqrt{16-4}}{2}$	M1	OE. Apply formula or complete the square.
	$A=(-2+\sqrt{3}, 1+2 \sqrt{3})$	A1	Or 2 correct x values.
	$B=(-2-\sqrt{3}, 1-2 \sqrt{3})$	A1	Or all values correct. SC B1 all 4 values correct in surd form without working. SC B1 all 4 values correct in decimal form from correct formula or completion of the square
	$A B^{2}=$ their $\left(x_{2}-x_{1}\right)^{2}+$ their $\left(y_{2}-y_{1}\right)^{2}$	M1	Using their coordinates in a correct distance formula. Condone one sign error in $x_{2}-x_{1}$ or $y_{2}-y_{1}$
	$\left[A B^{2}=48+12\right.$ leading to $] A B=\sqrt{60}$	A1	OE. CAO. Do not accept decimal answer. Answer must come from use of surd form in distance formula.
		7	

Question	Answer	Marks	Guidance
9(b)	$x^{2}+m^{2}(x-10)^{2}=20$	*M1	Finding equation of tangent and substituting into circle equation.
	$x^{2}\left(m^{2}+1\right)-20 m^{2} x+20\left(5 m^{2}-1\right)[=0]$	DM1	OE. Brackets expanded and all terms collected on one side of the equation.
	$\left[b^{2}-4 a c=\right] 400 m^{4}-80\left(m^{2}+1\right)\left(5 m^{2}-1\right)$	M1	Using correct coefficients from their quadratic equation.
	$400 m^{4}-80\left(5 m^{4}+4 m^{2}-1\right)=0 \rightarrow(-80)\left(4 m^{2}-1\right)=0$	A1	OE. Must have ' $=0$ ' for A1.
	$m= \pm \frac{1}{2}$	A1	
	Alternative method for question 9(b)		
	Length, l of tangent, is given by $l^{2}=10^{2}-20$	M1	
	$l=\sqrt{80}$	A1	
	$\tan \alpha=\frac{\sqrt{20}}{\sqrt{80}}=\frac{1}{2}$	M1 A1	Where α is the angle between the tangent and the x-axis.
	$m= \pm \frac{1}{2}$	A1	
		5	

Question	Answer	Marks	Guidance
10(a)	$\mathrm{f}^{\prime \prime}(x)=-\left(\frac{1}{2} x+k\right)^{-3}$	B1	
	$\mathrm{f}^{\prime \prime}(2)>0 \Rightarrow-(1+k)^{-3}>0$	M1	Allow for solving their $\mathrm{f}^{\prime \prime}(2)>0$
	$k<-1$	A1	www
		3	
10(b)	$\left[\mathrm{f}(x)=\int\left(\left(\frac{1}{2} x-3\right)^{-2}-(-2)^{-2}\right) \mathrm{d} x=\right]\left\{\frac{\left(\frac{1}{2} x-3\right)^{-1}}{-1 \times \frac{1}{2}}\right\}\left\{-\frac{x}{4}\right\}$	B1 B1	Allow $-2\left(\frac{1}{2} x+k\right)^{-1}$ OE for $1^{\text {st }} \mathrm{B} 1$ and $-(1+k)^{-2} x$ OE for $2^{\text {nd }} \mathrm{B} 1$
	$3 \frac{1}{2}=1-\frac{1}{2}+c$	M1	Substitute $x=2, y=3 \frac{1}{2}$ into their integral with c present.
	$\mathrm{f}(x)=\frac{-2}{\left(\frac{1}{2} x-3\right)}-\frac{x}{4}+3$	A1	OE
		4	
10(c)	$\left(\frac{1}{2} x-3\right)^{-2}-(-2)^{-2}=0$	M1	Substitute $k=-3$ and set to zero.
	leading to $\left(\frac{1}{2} x-3\right)^{2}=4\left[\frac{1}{2} x-3=(\pm) 2\right]$ leading to $x=10$	A1	
	(10, - $\frac{1}{2}$)	A1	Or when $x=10, y=-1-2 \frac{1}{2}+3=-\frac{1}{2}$
	$\mathrm{f}^{\prime \prime}(10)\left[=-(5-3)^{-3} \rightarrow\right]<0 \rightarrow$ MAXIMUM	A1	WWW
		4	

